Skip to main content

Automated Planning of Simple Persuasion Dialogues

  • Conference paper
Computational Logic in Multi-Agent Systems (CLIMA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8624))

Included in the following conference series:

Abstract

We take a simple form of non-adversarial persuasion dialogue in which one participant (the persuader) aims to convince the other (the responder) to accept the topic of the dialogue by asserting sets of beliefs. The responder replies honestly to indicate whether it finds the topic to be acceptable (we make no prescription as to what formalism and semantics must be used for this, only assuming some function for determining acceptable beliefs from a logical knowledge base). Our persuader has a model of the responder, which assigns probabilities to sets of beliefs, representing the likelihood that each set is the responder’s actual beliefs. The beliefs the persuader chooses to assert and the order in which it asserts them (i.e. its strategy) can impact on the success of the dialogue and the success of a particular strategy cannot generally be guaranteed (because of the uncertainty over the responder’s beliefs). We define our persuasion dialogue as a classical planning problem, which can then be solved by an automated planner to generate a strategy that maximises the chance of success given the persuader’s model of the responder; this allows us to exploit the power of existing automated planners, which have been shown to be efficient in many complex domains. We provide preliminary results that demonstrate how the efficiency of our approach scales with the number of beliefs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albore, A., Palacios, H., Geffner, H.: Compiling uncertainty away in non-deterministic conformant planning. In: Proc. of 19th European Conf. on Artificial Intelligence, pp. 465–470 (2010)

    Google Scholar 

  2. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial Intelligence 128(1-2), 203–235 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Black, E., Atkinson, K.: Choosing persuasive arguments for action. In: Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems, pp. 905–912 (2011)

    Google Scholar 

  4. Caminada, M.: On the issue of reinstatement in argumentation. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 111–123. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intellegence 77, 321–357 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artificial Intelligence 170(2), 114–159 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Egly, U., Gaggl, S.A., Woltran, S.: ASPARTIX: Implementing argumentation frameworks using answer-set programming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 734–738. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal planning domains. J. of Artificial Intelligence Research 20, 61–124 (2003)

    MATH  Google Scholar 

  9. García, A.J., Simari, G.R.: Defeasible logic programming an argumentative approach. Theory and Practice of Logic Programming 4(1-2), 95–138 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hadidi, N., Dimopoulos, Y., Moraitis, P.: Tactics and concessions for argumentation-based negotiation. In: Proc. of the 4th Int. Conf. on Computational Models of Argument, pp. 285–296 (2012)

    Google Scholar 

  11. Hadjinikolis, C., Siantos, Y., Modgil, S., Black, E., McBurney, P.: Opponent modelling in persuasion dialogues. In: Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence, pp. 164–170 (2013)

    Google Scholar 

  12. Hoffmann, J.: The Metric-FF planning system: Translating “ignoring delete lists” to numeric state variables. J. of Artificial Intelligence Research 20, 291–341 (2003)

    MATH  Google Scholar 

  13. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. J. of Artificial Intelligence Research 14, 253–302 (2001)

    MATH  Google Scholar 

  14. Hunter, A.: Analysis of dialogical argumentation via finite state machines. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS, vol. 8078, pp. 1–14. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Modgil, S., Prakken, H.: A general account of argumentation with preferences. Artificial Intelligence 195, 361–397 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Modgil, S., Toni, F., Bex, F., Bratko, I., Chesñevar, C.I., Dvořák, W., Falappa, M.A., Fan, X., Gaggl, S.A., García, A.J., González, M.P., Gordon, T.F., Leite, J., Možina, M., Reed, C., Simari, G.R., Szeider, S., Torroni, P., Woltran, S.: The added value of argumentation. In: Ossowski, S. (ed.) Agreement Technologies, pp. 357–403. Springer, Netherlands (2013)

    Google Scholar 

  17. Monteserin, A., Amandi, A.: Argumentation–based negotiation planning for autonomous agents. Decision Support Systems 51(3), 532–548 (2011)

    Article  Google Scholar 

  18. Panisson, A.R., Farias, G., Freitas, A., Meneguzzi, F., Vieira, R., Bordini, R.H.: Planning interactions for agents in argumentation-based negotiation. In: Proc. of 11th Int. Workshop on Argumentation in Multi-Agent Systems (2014)

    Google Scholar 

  19. Prakken, H.: Formal systems for persuasion dialogue. The Knowledge Engineering Review 21(02), 163–188 (2006)

    Article  Google Scholar 

  20. Reed, C., Long, D., Fox, M.: An architecture for argumentative dialogue planning. In: Gabbay, D.M., Ohlbach, H.J. (eds.) FAPR 1996. LNCS, vol. 1085, pp. 555–566. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  21. Rienstra, T., Thimm, M., Oren, N.: Opponent models with uncertainty for strategic argumentation. In: Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence (2013)

    Google Scholar 

  22. Taig, R., Brafman, R.I.: Compiling conformant probabilistic planning problems into classical planning. In: Proc. of 23rd Int. Conf. on Automated Planning and Scheduling (2013)

    Google Scholar 

  23. Thimm, M.: Strategic argumentation in multi-agent systems. In: Künstliche Intelligenz, Special Issue on Multi-Agent Decision Making (in press, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Black, E., Coles, A., Bernardini, S. (2014). Automated Planning of Simple Persuasion Dialogues. In: Bulling, N., van der Torre, L., Villata, S., Jamroga, W., Vasconcelos, W. (eds) Computational Logic in Multi-Agent Systems. CLIMA 2014. Lecture Notes in Computer Science(), vol 8624. Springer, Cham. https://doi.org/10.1007/978-3-319-09764-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09764-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09763-3

  • Online ISBN: 978-3-319-09764-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics