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1 Introduction

Machine learning studies automatic methods for acquisition of domain knowledge with
the goal of improving systems performance as the result of experience. In the past two
decades, machine learning research and practice has focused on batch learning usually
with small data sets. The rationale behind this practice is that examples are generated
at random accordingly to some stationary probability distribution. Most learners use a
greedy, hill-climbing search in the space of models. They are prone to overfitting, local
maximas, etc. Data are scarce and statistic estimates have high variance. A paradig-
matic example is the TDIT algorithm to learn decision trees [14]. As the tree grows,
less and fewer examples are available to compute the sufficient statistics, variance in-
crease leading to model instability Moreover, the growing process re-uses the same
data, exacerbating the overfitting problem. Regularization and pruning mechanisms are
mandatory.

The developments of information and communication technologies dramatically
change the data collection and processing methods. What distinguish current data sets
from earlier ones are automatic data feeds. We do not just have people entering infor-
mation into a computer. We have computers entering data into each other [7]. Moreover,
advances in miniaturization and sensor technology lead to sensor networks, collecting
high-detailed spatio-temporal data about the environment.

These technical developments pose new challenges and research oportunities to the
data mining community:

– Find the decision structure in the current window;
– What changed in the decision structure last week?
– Which patterns disappeared/appeared last week?
– Which patterns are growing/shrinking this month?
– Mine the evolution of decision structures.

In this paper we review some of the challenges in learning from continuous flow of data.

2 Algorithm Issues in Learning from Data Streams

The challenge problem for data mining is the ability to permanently maintain an accu-
rate decision model. This issue requires learning algorithms that can modify the current



model whenever new data is available at the rate of data arrival. Moreover, they should
forget older information when data is out-dated. In this context, the assumption that ex-
amples are generated at random according to a stationary probability distribution does
not hold, at least in complex systems and for large periods of time. In the presence of
a non-stationary distribution, the learning system must incorporate some form of for-
getting past and outdated information. Learning from data streams require incremental
learning algorithms that take into account concept drift. Solutions to these problems
require new sampling and randomization techniques, and new approximate, incremen-
tal and decremental algorithms. [9] identify desirable properties of learning systems
that are able to mine continuous, high-volume, open-ended data streams as they arrive.
Learning systems should be able to process examples and answering queries at the rate
they arrive. Some desirable properties for learning in data streams include: incremental-
ity, online learning, constant time to process each example, single scan over the training
set, and taking drift into account.

Incremental learning is one fundamental aspect for the process of continuously
adaptation of the decision model. The ability to update the decision model whenever
new information is available is an important property, but it is not enough, it also re-
quire operators with the ability to forget past information [13]. Some data stream mod-
els allow delete and update operators. Sliding windows models require forgetting old
information. In all these situations the incremental property is not enough. Learning
algorithms need forgetting operators that reverse learning: decremental unlearning [3].

The incremental and decremental issues requires a permanent maintenance and up-
dating of the decision model as new data is available. Of course, there is a trade-off
between the cost of update and the gain in performance we may obtain. Learning al-
gorithms exhibit different profiles. Algorithms with strong variance management are
quite efficient for small training sets. Very simple models, using few free-parameters,
can be quite efficient in variance management, and effective in incremental and decre-
mental operations being a natural choice in the sliding windows framework. The main
problem with simple representation languages is the boundary in generalization per-
formance they can achieve, since they are limited by high bias while large volumes of
data require efficient bias management. Complex tasks requiring more complex models
increase the search space and the cost for structural updating. These models, require
efficient control strategies for the trade-off between the gain in performance and the
cost of updating. A step in this direction is the so called algorithm output granularity
presented by [5]. Algorithm output granularity monitors the amount of mining results
that fits in main memory before any incremental integration. [6] illustrate the applica-
tion of the algorithm output granularity strategy to build efficient clustering, frequent
items and classification techniques.

In most applications, we are interested in maintaining a decision model consistent
with the current status of the nature. This lead us to the sliding window models where
data is continuously inserted and deleted from a window. Learning algorithms must
have operators for incremental learning and forgetting. Incremental learning and forget-
ting are well defined in the context of predictive learning. The meaning or the semantics
in other learning paradigms (like clustering) are not so well understood, very few works
address this issue.



When data flows over time, and at least for large periods of time, it is highly un-
provable the assumption that the examples are generated at random according to a sta-
tionary probability distribution. At least in complex systems and for large time periods,
we should expect changes in the distribution of the examples. A natural approach for
these incremental tasks are adaptive learning algorithms, incremental learning algo-
rithms that take into account concept drift. Concept drift means that the concept related
to the data being collected may shift from time to time, each time after some mini-
mum permanence. Changes occur over time. The evidence for changes in a concept
are reflected in some way in the training examples. Old observations, that reflect the
past behavior of the nature, become irrelevant to the current state of the phenomena
under observation and the learning agent must forget that information. The nature of
change is diverse. It might occur, in the context of learning, due to changes in hidden
variables, or changes in the characteristic properties of the observed variables. Most
learning algorithms use blind methods that adapt the decision model at regular intervals
without considering whether changes have really occurred. Much more interesting is
explicit change detection mechanisms. The advantage is that they can provide mean-
ingful description (indicating change-points or small time-windows where the change
occurs) and quantification of the changes. The main research issue is how to incorporate
change detection mechanisms in the learning algorithm, embedding change detection
methods in the learning algorithm is a requirement in the context of continuous flow
of data. The level of granularity of decision models is a relevant property, because if
can allow partial, fast and efficient updates in the decision model instead of rebuilding
a complete new model whenever a change is detected. The ability to recognize seasonal
and re-occurring patterns is an open issue.

Novelty detection refers to learning algorithms being able to identify and learn new
concepts. Intelligent agents that act in dynamic environments must be able to learn
conceptual representations of such environments. Those conceptual descriptions of the
world are always incomplete, they correspond to what it is known about the world. This
is the open world assumption as opposed to the traditional closed world assumption,
where what is to be learnt is defined in advance. In open worlds, learning systems should
be able to extend their representation by learning new concepts from the observations
that do not match the current representation of the world. This is a difficult task. It
requires to identify the unknown, that is, the limits of the current model. In that sense,
the unknown corresponds to an emerging pattern that is different from noise, or drift in
previously known concepts.

Data streams are distributed in nature. Learning from distributed data, we need ef-
ficient methods in minimizing the communication overheads between nodes [15]. The
strong limitations of centralized solutions is discussed in depth in [10, 11]. The authors
point out a mismatch between the architecture of most off-the-shelf data mining algo-
rithms and the needs of mining systems for distributed applications. Such mismatch
may cause a bottleneck in many emerging applications, namely hardware limitations
related to the limited bandwidth channels. Most important, in applications like moni-
toring, centralized solutions introduce delays in event detection and reaction, that can
make mining systems useless. Another direction, for distributed processing, explore
multiple models [4, 12]. [12] propose a method that offer an effective way to construct a



redundancy-free, accurate, and meaningful representation of large decision-tree ensem-
bles often created by popular techniques such as Bagging, Boosting, Random Forests
and many distributed and data stream mining algorithms.

In some challenging applications of Data Mining, data are better described by se-
quences (for example DNA data), trees (XML documents), and graphs (chemical com-
ponents). Tree mining in particular is an important field of research [1, 2]. XML patterns
are tree patterns, and XML is becoming a standard for information representation and
exchange over the Internet; the amount of XML data is growing, and it will soon con-
stitute one of the largest collections of human knowledge.

In the static case, similar data can be described with different schemata. In the case
of dynamic streams, the schema of the stream can also change. For example, in monitor-
ing sensor networks, and social network analysis, new nodes might appear and others
might diappear. We need algorithms that can deal with evolving feature spaces over
streams. There is very little work in this area, mainly pertaining to document streams.
For example, in sensor networks, the number of sensors is variable (usually increasing)
over time.

An important aspect of any learning algorithm is the hypothesis evaluation criteria.
Most of evaluation methods and metrics were designed for the static case and provide
a single measurement about the quality of the hypothesis. In the streaming context,
we are much more interested in how the evaluation metric evolves over time. Results
from the sequential statistics [16] may be much more appropriate. [8] propose a gen-
eral framework for assessing predictive stream learning algorithms using sequential
statistics. They show that the prequential error converges to an holdout estimator when
computed over sliding windows or using fading factors.

3 Conclusions

The ultimate goal of Data Mining is to develop systems and algorithms with high
level of autonomy. For such, Data Mining studies the automated acquisition of domain
knowledge looking for the improvement of systems performance as result of experi-
ence. These systems address the problems of data processing, modeling, prediction,
clustering, and control in changing and evolving environments. They self-evolve their
structure and knowledge on the environment.

The challenges and research opportunities of data streaming mining are abundant.
It is one of most pleasent research areas nowadays.
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