Abstract
Attribute disclosure occurs when the adversary can infer some sensitive information about an individual without identifying individual’s record in the published data set. To address this issue several privacy models were proposed with the goal of increasing the uncertainty of the adversary in deriving sensitive information from published data. In this chapter, firstly we review the underlying scenario used in statistical disclosure control (SDC) and Privacy-Preserving Data Mining (PPDM). In this chapter, we describe the attribute disclosure underlying scenario, the different forms of background knowledge of the adversary the adversary may have and their potential privacy attacks. then, we review the approaches introduced in the literature to tackle attribute disclosure attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We define an equivalence class of an anonymized table to be a set of records that have the same values for the non-confidential quasi-identifiers.
References
Domingo-Ferrer, J., Torra, V.: Disclosure control methods and information loss for microdata. Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies, pp. 91–110 (2001)
Mateo-Sanz, J.M., Domingo-Ferrer, J., Sebé, F.: Probabilistic information loss measures in confidentiality protection of continuous microdata. Data Min. Knowl. Disc. 11(2), 181–193 (2005)
Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast data anonymization with low information loss. In: Proceedings of the 33rd International Conference Very Large Data Bases, pp. 758–769 (2007)
Kifer, D., Gehrke, J.: l-diversity: privacy beyond k-anonymity. In: Proceedings of IEEE International Conference on Data Engineering (2006)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data, 1, (2007)
Martin, D.J., Kifer, D., Machanavajjhala, A., Gehrke, J., Halpern, J.Y.: Worst-case background knowledge for privacy-preserving data publishing. In: IEEE 23rd International Conference on Data Engineering, pp. 126–135 (2007)
Chen, B., Kifer, D., LeFevre, K., Machanavajjhala, A.: Privacy-preserving data publishing. Found. Trends Databases 2(1–2), 1–167 (2009)
Chen, B., LeFevre, K., Ramakrishnan, R.: Privacy skyline: privacy with multidimensional adversarial knowledge. In: VLDB ’07 Proceedings of the 33rd international conference on Very large data bases, pp. 770–781 (2007)
Li, T., Li, N.: Injector: mining background knowledge for data anonymization. In: ICDE ’08 Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, pp. 446–455 (2008)
Wong, R.C.-W., Fu, A.W.-C., Wang, K., Pei, J.: Minimality attack in privacy preserving data publishing. In: VLDB ’07 Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 543–554 (2007)
Li, N., Li, T.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: Proceedings of IEEE International Conference on Data Engineering (2007)
Li, J., Tao, Y., Xiao, X.: Preservation of proximity privacy in publishing numerical sensitive data. In: SIGMOD ’08 Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 473–486 (2008)
LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Workload-aware anonymization. In: KDD ’06 Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 277–286 (2006)
Zhang, Q., Koudas, N., Srivastava, D., Yu. T.: Aggregate query answering on anonymized tables. In: ICDE 2007 Proceedings of the 23rd International Conference on Data Engineering, pp. 116–125 (2007)
LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: efficient full-domain k-anonymity. In: SIGMOD ’05 Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 49–60 (2005)
Ciriani, V., di Vimercati, S.D.C., Foresti, S., Samarati, P.: Microdata protection. In: Yu T., Jajodia S. (eds.) Secure Data Management in Decentralized Systems, pp. 291–321. Springer, New York (2007)
Ciriani, V., di Vimercati, S.D.C., Foresti, S., Samarati, P.: k-anonymity. In: Yu T., Jajodia S. (eds.) Secure Data Management in Decentralized Systems, pp. 323–353. Springer, New York (2007)
Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)
Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. Technical Report, Computer Science Laboratory, SRI International (1998)
Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)
Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey on recent developments. ACM Comput. Surv. (CSUR). 42(4), (2010)
Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and privacy preservation. In ICDE ’05: Proceedings of the 21st International Conference on Data Engineering, pp. 205–216 (2005)
Fung, B.C.M., Wang, K., Yu, P.S.: Anonymizing classification data for privacy preservation. IEEE Trans. Knowl. Data Eng. 19(5), 711–725 (2007)
Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: ICDE ’05 Proceedings of the 21st International Conference on Data Engineering, pp. 217–228 (2005)
El Emam, K., Dankar, F.K., et al.: A globally optimal k-anonymity method for the de-identification of health data. JAMIA 16, 670–682 (2009)
Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: KDD ’02 Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 279–288 (2002)
Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 10(5), 571–588 (2002)
Winkler, W.: Using simulated annealing for k-anonymity. Technical Report 7, U.S. Census Bureau (2002)
Wang, K., Fung, B.C.M.: Anonymizing sequential releases. In: KDD ’06 Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 414–423 (2006)
Nergiz, M.E., Clifton, C., Nergiz, A.E.: Multirelational k-anonymity. IEEE Trans. on Knowl. Data Eng. 21(8), 1104–1117 (2009)
Defays, D., Anwar, M.: Micro-aggregation: a generic method. In: Proceedings of the 2nd International Seminar on Statistical Confidentiality, pp. 69–78 (1995)
Oganian, A., Domingo-Ferrer, J.: On the complexity of optimal microaggregation for statistical disclosure control. Stat. J. United Nations Econ. Comm. Eur. 18(4), 345–354 (2000)
Laszlo, M., Mukherjee, S.: Minimum spanning tree partitioning algorithm for microaggregation. IEEE Trans. Knowl. Data Eng. 17(7), 902–911 (2005)
Truta, T.M., Vinay, B.: Privacy protection: p-sensitive k-anonymity property. In: 2nd International Workshop on Private Data Management PDM. IEEE Press (2006)
Domingo-Ferrer, J., Sebé, F., Solanas, A.: Microaggregation heuristics for \(p\)-sensitive \(k\)-anonymity. In: UNECE work session statistical data confidentiality (2008)
Truta, T.M., Vinay, B.: Privacy protection: p-sensitive k-anonymity property. In: Proceedings of the 22nd International Conference on Data Engineering Workshops, p. 94 (2006)
Wong, R., Li, J., Fu, A., Wang, K.: (\(\alpha \), k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing. In: In ACM SIGKDD, pp. 754–759 (2006)
Ohrn, A., Ohno-Machado, L.: Using Boolean reasoning to anonymize databases. Artif. Intell. Med. 15(3), 235–254 (1999)
Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)
Domingo-Ferrer, J., Torra, V.: A critique of k-anonymity and some of its enhancements. In: ARES ’08 Proceedings of the 2008 Third International Conference on Availability, Reliability and Security, pp. 990–993 (2008)
Frikken, K.B., Zhang, Y.: Yet another privacy metric for publishing micro-data. In: WPES ’08 Proceedings of the 7th ACM workshop on Privacy in the electronic society, ACM, pp. 117–122 (2008)
Clifton, C., Kantarcioglu, M., Vaidya, J.: Defining privacy for data mining. In: Proceedings of National Science Foundation Workshop on Next Generation Data Mining (2002)
Vaidya, J., Clifton, C., Zhu, M.: Privacy Preserving Data Mining. Springer, New York (2006)
Dwork, C.: Differential privacy. In: International Colloquium on Automata, Languages and Programming, volume 4052 of Lecture Notes in Computer Science, pp. 1–12. Springer, New York (2006)
Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1), 86–95 (2011)
Machanavajjhala, A., Gehrke, J., Götz, M.: Data publishing against realistic adversaries. Proc. Very Large Databases Conf. 2(1), 790–801 (2009)
Mohammed, N., Chen, R., Fung, B.C.M., Yu, P.S.: Differentially private data release for data mining. In: ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 493–501 (2011)
Acknowledgments
This work is partially supported by the Ministry of Science and Technology of Spain under contract TIN2012-34557 and by the BSC-CNS Severo Ochoa program (SEV-2011-00067). The authors also acknowledge the support of the Natural Sciences and Engineering Research Council of Canada for this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Matwin, S., Nin, J., Sehatkar, M., Szapiro, T. (2015). A Review of Attribute Disclosure Control. In: Navarro-Arribas, G., Torra, V. (eds) Advanced Research in Data Privacy. Studies in Computational Intelligence, vol 567. Springer, Cham. https://doi.org/10.1007/978-3-319-09885-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-09885-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09884-5
Online ISBN: 978-3-319-09885-2
eBook Packages: EngineeringEngineering (R0)