Skip to main content

An Information Retrieval Approach to Document Sanitization

  • Chapter
  • First Online:
Advanced Research in Data Privacy

Part of the book series: Studies in Computational Intelligence ((SCI,volume 567))

  • 1265 Accesses

Abstract

In this paper we use information retrieval metrics to evaluate the effect of a document sanitization process, measuring information loss and risk of disclosure. In order to sanitize the documents we have developed a semi-automatic anonymization process following the guidelines of Executive Order 13526 (2009) of the US Administration. It embodies two main and independent steps: (i) identifying and anonymizing specific person names and data, and (ii) concept generalization based on WordNet categories, in order to identify words categorized as classified. Finally, we manually revise the text from a contextual point of view to eliminate complete sentences, paragraphs and sections, where necessary. For empirical tests, we use a subset of the Wikileaks Cables, made up of documents relating to five key news items which were revealed by the cables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Executive Order 13526, of the US Administration: Classified National Security Information, Section 1.4, points (a) to (h) (2009). http://www.whitehouse.gov/the-press-office/executive-order-classified-national-security-information

  2. Wikileaks Cable repository. http://www.cablegatesearch.net

  3. Chakaravarthy, V.T., Gupta, H., Roy, P., Mohania, M.K.: Efficient techniques for document sanitization. In: CIKM 2008, Napa Valley, California, USA, October 26–30 (2008)

    Google Scholar 

  4. Saygin, Y., Hakkani-Tr, D., Tur, G.: Sanitization and Anonymization of Document Repositories (2009)

    Google Scholar 

  5. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl. Based Syst. (IJUFKS) 10(5), 557–570 (2002)

    Google Scholar 

  6. Cumby, C., Ghani, R.: A machine learning based system for semi-automatically redacting documents. In: Proceedings of IAAI 2011 (2011)

    Google Scholar 

  7. Hong, T.-P., Lin, C.-W., Yang, K.-T., Wang, S.-L.: A heuristic data-sanitization approach based on TF-IDF. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part I. LNCS, vol. 6703, pp. 156–164. Springer, Heidelberg (2011)

    Google Scholar 

  8. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable signatures for independent removal of structure and content. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg (2012)

    Google Scholar 

  9. Chow, R., Staddon, J.N., Oberst, I.S.: Method and apparatus for facilitating document sanitization. US Patent Application Pub. No. US 2011/0107205 A1, May 5 (2011)

    Google Scholar 

  10. Neamatullah, I., Douglass, M.M., Lehman, L.H., Reisner, A., Villarroel, M., Long, W.J., Szolovits, P., Moody, G.B., Mark, R.G., Clifford, G.D.: Automated de-identification of free-text medical records. BMC Med. Inf. Decis. Making 8, 32 (2008)

    Article  Google Scholar 

  11. Anandan, B., Clifton, C., Jiang, W., Murugesan, M., Pastrana-Camacho, P., Si, L.: t-Plausibility: generalizing words to desensitize text. Trans. Data Priv. 5(3), 505–534 (2012)

    MathSciNet  Google Scholar 

  12. Miller, G.A., Beckwith, R., Fellbaum, C.D., Gross, D., Miller, K.: WordNet: an online lexical database. Int. J. Lexicograph 3(4), 235–244 (1990)

    Article  Google Scholar 

  13. Pingar: Entity extraction software. http://www.pingar.com

  14. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)

    Article  Google Scholar 

  15. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and Technology Behind Search, 2nd edn. ACM Press Books, England (2011)

    Google Scholar 

  16. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  17. Yahoo! News. Top 10 revelations from Wiki Leaks cables. http://news.yahoo.com/blogs/lookout/top-10-revelations-wikileaks-cables.html

  18. Abril, D., Navarro-Arribas, G., Torra, V.: On the Declassification of Confidential Documents: Modeling Decision for Artificial Intelligence. Springer, Berlin (2011)

    Google Scholar 

Download references

Acknowledgments

This research is partially supported by the Spanish MEC projects CONSOLIDER INGENIO 2010 CSD2007-00004 and eAEGIS TSI2007-65406-C03-02. The work contributed by the second author was carried out as part of the Computer Science Ph.D. program of the Universitat Autònoma de Barcelona (UAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Abril .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nettleton, D.F., Abril, D. (2015). An Information Retrieval Approach to Document Sanitization. In: Navarro-Arribas, G., Torra, V. (eds) Advanced Research in Data Privacy. Studies in Computational Intelligence, vol 567. Springer, Cham. https://doi.org/10.1007/978-3-319-09885-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09885-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09884-5

  • Online ISBN: 978-3-319-09885-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics