Skip to main content

Ventral Stream Plays an Important Role in Statistical Graph Comprehension: An fMRI Study

  • Conference paper
Brain Informatics and Health (BIH 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8609))

Included in the following conference series:

  • 1759 Accesses

Abstract

Although statistical graph comprehension has been investigated in cognitive psychology, it has not been reported in cognitive neuroscience. The study designed an experimental condition, i.e., a statistical graph (SG), and two control conditions, i.e., a text (ST) and a statistical graph with text (SGT), where the ST is a verbal description of the information from the SG, and the SGT is a mixed graph + textual description. We used fMRI to analyze the brain activity of 36 normal subjects while they passively view the statistical information presented in any of SG, ST, and SGT. The results indicate that statistical graph comprehension requires the involvement of both ventral and dorsal streams, with more dependence on the ventral stream than the dorsal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kosslyn, S.M.: Understanding charts and graphs. Applied Cognitive Psychology 3, 185–226 (1989)

    Article  Google Scholar 

  2. Carpenter, P.A., Shah, P.: A Model of the Perceptual and Conceptual Processes in Graph Comprehension. Journal of Experimental Psychology: Applied 4, 75–100 (1998)

    Google Scholar 

  3. Zacks, J., Tversky, B.: Bars and lines: A study of graphic communication. Memory and Cognition 27, 1073–1079 (1999)

    Article  Google Scholar 

  4. Cleveland, W.S., Mcgill, R.: Graphical perception - theory, experimentation, and application to the development of graphical methods. J. Am. Stat. Assoc. 79, 531–554 (1984)

    Article  MathSciNet  Google Scholar 

  5. Ratwani, R.M., Trafton, J.G.: Making graphical inferences: a hierarchical framework. In: The 26th Annual Meeting of the Cognitive Science Society. Erlbaum and Associates, Chicago (2004)

    Google Scholar 

  6. Scaife, M., Rogers, Y.: External cognition: How do graphical representations work? Int. J. Hum-Comput. St. 45, 185–213 (1996)

    Article  Google Scholar 

  7. Cheng, P.C., Lowe, R.K., Scaife, M.: Cognitive science approaches to understanding diagrammatic representations. Artif. Intell. Rev. 15, 79–94 (2001)

    Article  MATH  Google Scholar 

  8. Lohse, G.L.: Eye Movement-Based Analyses of Graphs and Text: The Next Generation. In: Proceedings of the International Conference on Information Systems, 14th edn. ACM (1993)

    Google Scholar 

  9. Hegarty, M.: Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, and Cognition 18, 1084–1102 (1992)

    Google Scholar 

  10. Rayner, K., Rotelloa, C.M., Stewartb, A.J., Keira, J., Duffy, S.A.: Integrating Text and Pictorial Information: Eye Movements When Looking at Print Advertisements. Journal of Experimental Psychology: Applied 7, 219–226 (2001)

    Google Scholar 

  11. St George, M., Kutas, M., Martinez, A., Sereno, M.I.: Semantic integration in reading: engagement of the right hemisphere during discourse processing. Brain 122, 1317–1325 (1999)

    Article  Google Scholar 

  12. Mishkin, M., Ungerleider, L.G., Macko, K.A.: Object vision and spatial vision - 2 cortical pathways. Trends Neurosci. 6, 414–417 (1983)

    Article  Google Scholar 

  13. Haxby, J.V., Grady, C.L., Horwitz, B., Ungerleider, L.G., Mishkin, M., Carson, R.E., et al.: Dissociation of object and spatial visual processing pathways in human extrastriate cortex. PNAS 88, 1621–1625 (1991)

    Article  Google Scholar 

  14. Shmuelof, L., Zohary, E.: Dissociation between ventral and dorsal fMRl activation during object and action recognition. Neuron 47, 457–470 (2005)

    Article  Google Scholar 

  15. Valyear, K.F., Culham, J.C., Sharif, N., Westwood, D., Goodale, M.A.: A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: A human fMRI study. Neuropsychologia 44, 218–228 (2006)

    Article  Google Scholar 

  16. Gerlach, C., Law, I., Paulson, O.B.: Shape configuration and category-specificity. Neuropsychologia 44, 1247–1260 (2006)

    Article  Google Scholar 

  17. Bar, M., Tootell, R., Schacter, D.L., Greve, D.N., Fischl, B., Mendola, J.D., et al.: Cortical mechanisms specific to explicit visual object recognition. Neuron 29, 529–535 (2001)

    Article  Google Scholar 

  18. Martinez, A., Anllo-Vento, L., Sereno, M.I., Frank, L.R., Buxton, R.B., Dubowitz, D.J., et al.: Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience 2, 364–369 (1999)

    Article  Google Scholar 

  19. Hopfinger, J.B., Buonocore, M.H., Mangun, G.R.: The neural mechanisms of top-down attentional control. Nature Neuroscience 3, 284–291 (2000)

    Article  Google Scholar 

  20. Johnsrude, I.S., Owen, A.M., Crane, J., Milner, B., Evans, A.C.: A cognitive activation study of memory for spatial relationships. Neuropsychologia 37, 829–841 (1999)

    Article  Google Scholar 

  21. Sommer, T., Rose, M., Weiller, C., Buchel, C.: Contributions of occipital, parietal and parahippocampal cortex to encoding of object-location associations. Neuropsychologia 43, 732–743 (2005)

    Article  Google Scholar 

  22. Margulies, D.S., Vincent, J.L., Kelly, C., Lohmann, G., Uddin, L.Q., Biswal, B.B., et al.: Precuneus shares intrinsic functional architecture in humans and monkeys. PNAS 106, 20069–20074 (2009)

    Article  Google Scholar 

  23. Bertin, J.: Semiology of graphs. University of Wisconsin Press, Madison (1983)

    Google Scholar 

  24. Trickett, S.B., Trafton, J.G.: Toward a comprehensive model of graph comprehension: Making the case for spatial cognition. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006. LNCS (LNAI), vol. 4045, pp. 286–300. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Pinker, S.: A Theory of Graph Comprehension. In: Freedle, R. (ed.) Artificial Intelligence and the Future of Testing, pp. 73–126. Lawrence Erlbaum Associates Ltd., Hillsdale (1990)

    Google Scholar 

  26. Shah, P., Freedman, E.G., Vekiri, I.: The Comprehension of Quantitative Information in Graphical Displays. Cambridge University Press, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, M., Lu, S., Wang, J., Ma, L., Zhang, M., Zhong, N. (2014). Ventral Stream Plays an Important Role in Statistical Graph Comprehension: An fMRI Study. In: Ślȩzak, D., Tan, AH., Peters, J.F., Schwabe, L. (eds) Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science(), vol 8609. Springer, Cham. https://doi.org/10.1007/978-3-319-09891-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09891-3_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09890-6

  • Online ISBN: 978-3-319-09891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics