Abstract
Resting-state Functional Magnetic Resonance Imaging (FMRI) analysis has consistently shown the presence of specific spatial activation patterns. Independent component analysis (ICA) has been the analysis algorithm of choice even though its underlying assumptions preclude deeper connectivity analysis. By combining novel concepts of group sparsity with contiguity-constrained clusterization, we developed a new class of Local dimension-reduced Dynamical Spatio-Temporal Models (LDSTM) for estimating whole-brain dynamical models whereby the causal relationships between well localized spatial components can be identified. Experimental results of LDSTM on group resting-state FMRI data reveal physiologically plausible spatio-temporal brain connectivity patterns among participants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baccala, L.A., de Brito, C.S.N., Takahashi, D.Y., Sameshima, K.: Unified asymptotic theory for all partial directed coherence forms. Phil. Trans. R. Soc. A 371(1997), 20120158 (2013)
Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Structured sparsity through convex optimization. arXiv e-print 1109.2397 (September 2011)
Biswal, B.B., et al.: Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A. 107(10), 4734–4739 (2010), PMID: 20176931
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 33–61 (1998)
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Modeling & Simulation 4(4), 1168–1200 (2005)
Cortes, J.: Distributed kriged kalman filter for spatial estimation. IEEE Transactions on Automatic Control 54(12), 2816–2827 (2009)
Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckmann, C.F.: Consistent resting-state networks across healthy subjects. PNAS 103(37), 13848–13853 (2006), PMID: 16945915
Daubechies, I., Roussos, E., Takerkart, S., Benharrosh, M., Golden, C., D’Ardenne, K., Richter, W., Cohen, J.D., Haxby, J.: Independent component analysis for brain fMRI does not select for independence. Proc. Natl. Acad. Sci. U. S. A. 106(26), 10415–10422 (2009), PMID: 19556548 PMCID: PMC2705604
Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. arXiv e-print math/0307152 (July 2003)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–38 (1977)
Dewar, M., Scerri, K., Kadirkamanathan, V.: Data-driven spatio-temporal modeling using the integro-difference equation. IEEE Transactions on Signal Processing 57(1), 83–91 (2009)
Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: Asymptopia? Journal of the Royal Statistical Society. Series B (Methodological) 57(2), 301–369 (1995), ArticleType: research-article/Full publication date: 1995/Copyright 1995 Royal Statistical Society
Feinberg, D.A., Moeller, S., Smith, S.M., Auerbach, E., Ramanna, S., Glasser, M.F., Miller, K.L., Ugurbil, K., Yacoub, E.: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS ONE 5(12), e15710 (2010)
Figueiredo, M.A.T., Nowak, R.D.: An EM algorithm for wavelet-based image restoration. IEEE Transactions on Image Processing 12(8), 906–916 (2003)
Mallat, S.G.: A wavelet tour of signal processing the Sparse way. Elsevier/Academic Press, Amsterdam (2009)
Mardia, K.V., Goodall, C., Redfern, E.J., Alonso, F.J.: The kriged kalman filter. Test 7(2), 217–282 (1998)
Rauch, H.E., Striebel, C.T., Tung, F.: Maximum likelihood estimates of linear dynamic systems. Journal of the American Institute of Aeronautics and Astronautics 3(8), 1445–1450 (1965)
Scerri, K., Dewar, M., Kadirkamanathan, V.: Estimation and model selection for an IDE-Based spatio-temporal model. IEEE Transactions on Signal Processing 57(2), 482–492 (2009)
Shumway, R.H., Stoffer, D.S.: An approach to time series smoothing and forecasting using the em algorithm. Journal of Time Series Analysis 3(4), 253–264 (1982)
Theophilides, C.N., Ahearn, S.C., Grady, S., Merlino, M.: Identifying west nile virus risk areas: The dynamic continuous-area space-time system. Am. J. Epidemiol. 157(9), 843–854 (2003), PMID: 12727678
Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58, 267–288 (1994)
Wikle, C.K., Cressie, N.: A dimension-reduced approach to space-time kalman filtering. Biometrika 86(4), 815–829 (1999)
Woolrich, M.W., Jenkinson, M., Brady, M., Smith, S.M.: Fully bayesian spatio-temporal modeling of FMRI data. IEEE Trans. Med. Imaging 23(2), 213–231 (2004), PMID: 14964566
Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing 57(7), 2479–2493 (2009)
Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68(1), 49–67 (2006)
Zhao, P., Rocha, G., Yu, B.: The composite absolute penalties family for grouped and hierarchical variable selection. arXiv e-print 0909.0411 (September 2009), Annals of Statistics 37(6A), 3468–3497 (2009)
Zibulevsky, M., Pearlmutter, B.A.: Blind source separation by sparse decomposition in a signal dictionary. Neural Computation 13(4), 863–882 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Vieira, G., Amaro, E., Baccalá, L.A. (2014). Local Dimension-Reduced Dynamical Spatio-Temporal Models for Resting State Network Estimation. In: Ślȩzak, D., Tan, AH., Peters, J.F., Schwabe, L. (eds) Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science(), vol 8609. Springer, Cham. https://doi.org/10.1007/978-3-319-09891-3_40
Download citation
DOI: https://doi.org/10.1007/978-3-319-09891-3_40
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09890-6
Online ISBN: 978-3-319-09891-3
eBook Packages: Computer ScienceComputer Science (R0)