Skip to main content

Balancing the Stability and Predictive Performance for Multivariate Voxel Selection in fMRI Study

  • Conference paper
Brain Informatics and Health (BIH 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8609))

Included in the following conference series:

Abstract

Recently, the Multivariate Pattern Analysis (MVPA) studies for fMRI not only focus on cognitive state prediction, but also explore the interpretations of brain activity using model predictors (selected voxels). A model is considered to be good for interpreting brain activity if the selected voxels are all relevant to the specific cognitive state. Classical MVPA methods select voxels based on their prediction power; the selected ones are those that provide the best prediction performance. This precision based voxel selection method can guarantee the prediction performance, but it cannot ensure that all the selected ones are relevant. The interpretation of brain activity is therefore not ideal. This paper addresses this issue by introducing the concept of stability to the MVPA studies. If only the stability is emphasized in the selection process, the probability of selecting irrelevant voxels is highly reduced with the sacrifice of the prediction precision. We, therefore, propose a method to combine the stability assessment with the prediction precision assessment. In this paper, the proposed voxel selection method is integrated into a linear sparse predictor, Random Subspace Sparse Bayesian Learning (RS-SBL). The experiment results of simulation datasets demonstrate that our method can simultaneously reduce false positive and false negative rates while maintaining the prediction performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friston, K.J., Jezzard, P., Turner, R.: Analysis of Functional MRI Time-series. Human Brain Mapping 1, 153–171 (1994)

    Article  Google Scholar 

  2. Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P.: Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex. Science 293, 2425–2430 (2001)

    Article  Google Scholar 

  3. Yamashita, O., Sato, M., Yoshioka, T., Tong, F., Kamitani, Y.: Sparse Estimation Automatically Selects Voxels Relevant for the Decoding of fMRI Activity Patterns. NeuroImage 42, 1414–1429 (2008)

    Article  Google Scholar 

  4. Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Rao, A.: Ravishankar.: Prediction and Interpretation of Distributed Neural Activity with Sparse Models. NeuroImage 44, 112–122 (2009)

    Article  Google Scholar 

  5. Ryali, S., Supekar, K., Abrams, D.A., Menon, V.: Sparse Logistic Regression for Whole-brain Classification of fMRI Data. NeuroImage 51, 752–764 (2010)

    Article  Google Scholar 

  6. Varoquaux, G., Gramfort, A., Thirion, B.: Smallsample Brain Mapping: Sparse Recovery on Spatially Correlated Designs with Randomization and Clustering. In: Proceedings of the 29th International Conference on Machine Learning, vol. 4 (2012)

    Google Scholar 

  7. Abeel, T., Helleputte, T., de Peer, Y.V., et al.: Robust Biomarker Identification for Cancer Diagnosis with Ensemble Feature Selection Methods. Bioinformatics 26, 298–392 (2010)

    Article  Google Scholar 

  8. Zuchnick, M., Richardson, S., Stronach, E.A.: Comparing the Characteristics of Gene Expression Profiles Derived by Univariate and Multivariate Classification Methods. Statistical Applications in Genetics and Molecular Biology 7(1) (2008)

    Google Scholar 

  9. Krirk, P., Witkover, A., Bangham, C.R., et al.: Balancing the Robustness and Predictive Performance of Biomarkders. Journal of Computational Biology 20, 979–989 (2013)

    Article  MathSciNet  Google Scholar 

  10. Yan, S., Yang, X., Wu, C., Guo, Y.: Integration of Sparse Bayesian Learning and Random Subspace for fMRI Multivariate Analysis. In: Submitted to the 36st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2014)

    Google Scholar 

  11. Tipping, M.E.: Sparse Bayesian Learning and the Relevance Vector Machine. The Journal of Machine Learning Research 1, 211–244 (2001)

    MATH  MathSciNet  Google Scholar 

  12. Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric Bagging and Random Subspace for Support Vector Machines-based Relevance Feedback in Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1088–1099 (2006)

    Article  Google Scholar 

  13. Misaki, M., Kim, Y., Bandettini, P.A., Kriegeskorte, N.: Comparison of Multivariate Classifiers and Response Normalizations for Pattern-information fmri. NeuroImage 59, 1207–1223 (2006)

    Google Scholar 

  14. Donoho, D.L.: Compressed Sensing. IEEE Transactions on Information Theory 52, 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Baraniuk, R.G.: Compressive Sensing (lecture notes). IEEE Signal Processing Magazine 24, 118–121 (2007)

    Article  Google Scholar 

  16. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics 52(12), 5406–5425 (2006)

    Google Scholar 

  17. Tropp, J.A., Gilbert, A.C.: Signal Recovery from Random Measurements via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory 53, 4655–4666 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wainwright, M.J.: Sharp Thresholds for High-dimensional and Noisy Sparsity Recovery using l1-constrained Quadratic Programming (Lasso). IEEE Transactions on Information Theory 55, 2183–2202 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yan, S., Yang, X., Wu, C., Zheng, Z., Guo, Y. (2014). Balancing the Stability and Predictive Performance for Multivariate Voxel Selection in fMRI Study. In: Ślȩzak, D., Tan, AH., Peters, J.F., Schwabe, L. (eds) Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science(), vol 8609. Springer, Cham. https://doi.org/10.1007/978-3-319-09891-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09891-3_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09890-6

  • Online ISBN: 978-3-319-09891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics