Skip to main content

Exploring Temporal Dependencies to Perform Automatic Prognosis

  • Conference paper
Active Media Technology (AMT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8610))

Included in the following conference series:

  • 2392 Accesses

Abstract

The use of data mining techniques in healthcare has been noticing an increased relevance over the last few years, being applied with a variety of objectives, with the most common one being the automatic diagnostic process. In this process, data mining techniques have achieved interesting and successful results. However, when it comes to prognosis the same quality of results is not being achieved. We argue that this happens thanks to the inability of the used techniques to capture the inherent temporal dependencies present on the data. Specifically, the temporal evolution of a patient is not being taken into account when performing prognosis. In this paper, we propose a different approach, independent of the domain, to address this issue. We present our preliminary results on two different datasets that show an improvement in the overall precision of the prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sackett, D., Rosenberg, W., Muir Gray, J., Haynes, R., Richardson, W.: Evidence based medicine: what it is and what it isn’t. BMJ 312(7023), 71–72 (1996)

    Article  Google Scholar 

  2. Endo, A., Shibata, T., Tanaka, H.: Comparison of Seven Algorithms to Predict Breast Cancer Survival. Biomedical Soft Computing and Human Sciences 13(2), 11–16 (2008)

    Google Scholar 

  3. Maroco, J., Silva, D., Rodrigues, A., Guerreiro, M., Santana, I., Mendonça, A.: Data mining methods in the prediction of dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Research Notes 4, 299 (2011)

    Article  Google Scholar 

  4. Abdul-Kareem, S., Raviraja, S., Awadh, N., Kamaruzaman, A., Kajindran, A.: Classification and regression tree in prediction of survival of AIDS patients. Malaysian Journal of Computer Science 23(3), 153–165 (2010)

    Google Scholar 

  5. Paradise, M., Walker, Z., Cooper, C., Blizard, R., Regan, C.: Prediction of survival in Alzheimer’s disease – The LASER-AD longitudinal study. Int’l Journal of Geriatic Psychiatry 24(7), 739–747 (2009)

    Article  Google Scholar 

  6. Zhou, J., Yuan, L., Liu, J., Ye, J.: A Multi-Task Learning Formulation for Predicting Disease Progression. In: ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp. 814–822 (2011)

    Google Scholar 

  7. Steyerberg, E., Homs, M., Stokvis, A., Essink-Bot, M., Siersema, P., Study, G.: Stent placement or brachytherapy for palliation of dysphagia from esophageal cancer: A prognostic model to guide treatment selection. Gastrointestinal Endoscopy 62(3), 333–340 (2005)

    Article  Google Scholar 

  8. Kharya, S.: Using data mining techniques for diagnosis and prognosis of cancer disease. Int’l Journal of Computer Science, Engineering and Information Technology (IJCSEIT) 2(2), 55–66 (2012)

    Article  Google Scholar 

  9. Mitsa, T.: Temporal Data Mining. Chapman & Hall / CRC (2010)

    Google Scholar 

  10. Hendriksen, J., Geersing, G., Moons, K., Groot, J.: Diagnostic and prognostic prediction models. Journal of Thrombosis and Haemostasis 11(1), 129–141 (2013)

    Article  Google Scholar 

  11. Nash, C., Jones, S., Moon, T., Davis, S., Salmon, S.: Prediction of outcome in metastatic breast cancer treated with adriamycin combination chemotherapy. Cancer 46(11), 2380–2388 (1980)

    Article  Google Scholar 

  12. Cox, D.: Regression Models and Life-Tables. Journal of the Royal Statistical Society, Series B 34(2), 187–220 (1972)

    MATH  Google Scholar 

  13. Antunes, C., Oliveira, A.: Temporal Data Mining: An overview. In: 1st Workshop on Temporal Data Mining at ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, San Francisco, USA (2001)

    Google Scholar 

  14. Palit, A.K., Popovic, D.: Computational Intelligence in Time Series Forecasting: Theory and engineering applications. Springer (2005)

    Google Scholar 

  15. Henriques, R., Antunes, C.: Learning Predictive Models from Integrated Healthcare Data: Extending Pattern-based and Generative Models to Capture Temporal and Cross-Attribute Dependencies. In: Hawaii Int’l Conf. System Sciences, BigIsland, Hawaii, USA (2014)

    Google Scholar 

  16. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. UC Berkeley, Computer Science Division (2002)

    Google Scholar 

  17. Antunes, C.: Anticipating student’s failure as soon as possible. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R. (eds.) Handbook for Educational Data Mining, pp. 353–363. CRC Press, New York (October 2010)

    Google Scholar 

  18. Ewers, M., Walsh, C., Trojanowski, J., Shaw, L., Petersen, R., Jack, C., Feldman, H., Bokde, A., Alexander, G., Scheltens, P., Vellas, B., Dubois, B., Weiner, M., Hampel, H.: Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiology of Aging 33(7), 1203–1214 (2012)

    Article  Google Scholar 

  19. Lundin, M., Lundin, J., Burke, H., Toikkanen, S., Pylkkänen, L., Joensuu, H.: Artificial Neural Networks Applied to Survival Prediction in Breast Cancer. Oncology 57, 281–286 (1999)

    Article  Google Scholar 

  20. Lakshmi, K.R., Krishna, M., Kumar, S.: Performance comparison of data mining techniques for prediction and diagnosis of breast cancer disease survivability. Asian Journal of Computer Science and Information Technology 3(5), 81–87 (2013)

    Google Scholar 

  21. Bellaachia, A., Guven, E.: Predicting Breast Cancer Survivability using Data Mining Techniques (April 2006)

    Google Scholar 

  22. Delen, D.: Analysis of cancer data: A data mining approach. Expert Systems 26(1), 100–112 (2009)

    Article  Google Scholar 

  23. Kusiak, A., Dixon, B., Shaha, S.: Predicting survival time for kidney dialysis patients: A data mining approach. Computers in Biology and Medicine 35(4), 311–327 (2005)

    Article  Google Scholar 

  24. Choi, J., Han, T., Park, R.: A Hybrid Bayesian Network Model for Predicting Breast Cancer Prognosis. Journal of Korean Society of Medical 15(1), 49–57 (2009)

    Article  Google Scholar 

  25. Petrovsky, N., Tam, S., Brusic, V., Russ, G., Socha, L., Bajic, V.: Use of Artificial Neural Networks in Improving Renal Transplantation Outcomes. Graft 5(1), 6–13 (2002)

    Article  Google Scholar 

  26. Osofisan, A., Adeyemo, O., Sawyerr, B., Eweje, O.: Prediction of Kidney Failure Using Artificial Neural Networks. European Journal of Scientific Research 61(4), 487 (2011)

    Google Scholar 

  27. Sun, B.-Y., Zhu, Z.-H., Li, J., Linghu, B.: Combined Feature Selection and Cancer Prognosis Using Support Vector Machine. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(6), 1671–1677 (2011)

    Article  Google Scholar 

  28. Li, J., Serpen, G., Selman, S., Franchetti, M., Riesen, M., Schneider, C.: Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period. Int’l Journal of Medicine and Medical Sciences 1(4), 215–221 (2010)

    Google Scholar 

  29. Shadabi, F., Cox, R., Sharma, D., Petrovsky, N.: Use of Artificial Neural Networks in the Prediction of Kidney Transplant Outcomes. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3215, pp. 566–572. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  30. Delen, D., Walker, G., Kadam, A.: Predicting breast cancer survivability: A comparison of three data mining methods. Artificial Intelligence in Medicine 34(2), 113–127 (2005)

    Article  Google Scholar 

  31. Oztekin, A., Delen, D., Kong, Z.: Predicting the graft survival for heart–lung transplantation patients: An integrated data mining methodology. Int’l Journal of Medical Informatics 78(12), 84–96 (2009)

    Article  Google Scholar 

  32. Ataide, E.C., Garcia, M., Mattosinho, T.J.A.P., Almeida, J.R.S., Escanhoela, C.A.F., Boin, I.F.S.F.: Predicting Survival After Liver Transplantation Using Up-to-Seven Criteria in Patients with Hepatocellular Carcinoma. Transplantation Proceedings 44(8), 2438–2440 (2012)

    Article  Google Scholar 

  33. Egger, M., May, M., Chêne, G., Phillips, A., Ledergerber, B., Dabis, F., Costagliola, D., Monforte, A., Wolf, F., Reiss, P., Lundgren, J., Justice, A., Staszewski, S., et al.: Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy: A collaborative analysis of prospective studies. The Lancet 360(9327), 119–129 (2002)

    Article  Google Scholar 

  34. Dom, R., Kareem, S., Abidin, B., Kamaruzaman, A., Kajindran, A.: The Prediction of AIDS Survival: A Data Mining Approach. In: WSEAS Int’l Conf. Multivariate Analysis and its Application in Science and Engineering, pp. 48–53 (2009)

    Google Scholar 

  35. Wang, K.-M., Makond, B., Wu, W.-L., Wang, K.-J., Lin, Y.: Optimal Data Mining Method For Predicting Breast Cancer Survivability. Int’l Journal of Innovative Management, Information & Production 3(2), 28–33 (2012)

    Google Scholar 

  36. Hong, Z., Wu, J., Smart, G., Kaita, K., Wen, S.W., Paton, S., Dawood, M.: Survival Analysis of Liver Transplant Patients in Canada 1997–2002. Transplantation Proceedings 38(9), 2951–2956 (2006)

    Article  Google Scholar 

  37. Ahn, J., Kwon, J., Lee, Y.: Prediction of 1-year Graft Survival Rates in Kidney Transplantation: A Bayesian Network Model. In: INFORMS & KORMS, pp. 505–513 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cardoso, D., Antunes, C. (2014). Exploring Temporal Dependencies to Perform Automatic Prognosis. In: Ślȩzak, D., Schaefer, G., Vuong, S.T., Kim, YS. (eds) Active Media Technology. AMT 2014. Lecture Notes in Computer Science, vol 8610. Springer, Cham. https://doi.org/10.1007/978-3-319-09912-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09912-5_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09911-8

  • Online ISBN: 978-3-319-09912-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics