Abstract
The use of data mining techniques in healthcare has been noticing an increased relevance over the last few years, being applied with a variety of objectives, with the most common one being the automatic diagnostic process. In this process, data mining techniques have achieved interesting and successful results. However, when it comes to prognosis the same quality of results is not being achieved. We argue that this happens thanks to the inability of the used techniques to capture the inherent temporal dependencies present on the data. Specifically, the temporal evolution of a patient is not being taken into account when performing prognosis. In this paper, we propose a different approach, independent of the domain, to address this issue. We present our preliminary results on two different datasets that show an improvement in the overall precision of the prognosis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sackett, D., Rosenberg, W., Muir Gray, J., Haynes, R., Richardson, W.: Evidence based medicine: what it is and what it isn’t. BMJ 312(7023), 71–72 (1996)
Endo, A., Shibata, T., Tanaka, H.: Comparison of Seven Algorithms to Predict Breast Cancer Survival. Biomedical Soft Computing and Human Sciences 13(2), 11–16 (2008)
Maroco, J., Silva, D., Rodrigues, A., Guerreiro, M., Santana, I., Mendonça, A.: Data mining methods in the prediction of dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Research Notes 4, 299 (2011)
Abdul-Kareem, S., Raviraja, S., Awadh, N., Kamaruzaman, A., Kajindran, A.: Classification and regression tree in prediction of survival of AIDS patients. Malaysian Journal of Computer Science 23(3), 153–165 (2010)
Paradise, M., Walker, Z., Cooper, C., Blizard, R., Regan, C.: Prediction of survival in Alzheimer’s disease – The LASER-AD longitudinal study. Int’l Journal of Geriatic Psychiatry 24(7), 739–747 (2009)
Zhou, J., Yuan, L., Liu, J., Ye, J.: A Multi-Task Learning Formulation for Predicting Disease Progression. In: ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp. 814–822 (2011)
Steyerberg, E., Homs, M., Stokvis, A., Essink-Bot, M., Siersema, P., Study, G.: Stent placement or brachytherapy for palliation of dysphagia from esophageal cancer: A prognostic model to guide treatment selection. Gastrointestinal Endoscopy 62(3), 333–340 (2005)
Kharya, S.: Using data mining techniques for diagnosis and prognosis of cancer disease. Int’l Journal of Computer Science, Engineering and Information Technology (IJCSEIT) 2(2), 55–66 (2012)
Mitsa, T.: Temporal Data Mining. Chapman & Hall / CRC (2010)
Hendriksen, J., Geersing, G., Moons, K., Groot, J.: Diagnostic and prognostic prediction models. Journal of Thrombosis and Haemostasis 11(1), 129–141 (2013)
Nash, C., Jones, S., Moon, T., Davis, S., Salmon, S.: Prediction of outcome in metastatic breast cancer treated with adriamycin combination chemotherapy. Cancer 46(11), 2380–2388 (1980)
Cox, D.: Regression Models and Life-Tables. Journal of the Royal Statistical Society, Series B 34(2), 187–220 (1972)
Antunes, C., Oliveira, A.: Temporal Data Mining: An overview. In: 1st Workshop on Temporal Data Mining at ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, San Francisco, USA (2001)
Palit, A.K., Popovic, D.: Computational Intelligence in Time Series Forecasting: Theory and engineering applications. Springer (2005)
Henriques, R., Antunes, C.: Learning Predictive Models from Integrated Healthcare Data: Extending Pattern-based and Generative Models to Capture Temporal and Cross-Attribute Dependencies. In: Hawaii Int’l Conf. System Sciences, BigIsland, Hawaii, USA (2014)
Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. UC Berkeley, Computer Science Division (2002)
Antunes, C.: Anticipating student’s failure as soon as possible. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R. (eds.) Handbook for Educational Data Mining, pp. 353–363. CRC Press, New York (October 2010)
Ewers, M., Walsh, C., Trojanowski, J., Shaw, L., Petersen, R., Jack, C., Feldman, H., Bokde, A., Alexander, G., Scheltens, P., Vellas, B., Dubois, B., Weiner, M., Hampel, H.: Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiology of Aging 33(7), 1203–1214 (2012)
Lundin, M., Lundin, J., Burke, H., Toikkanen, S., Pylkkänen, L., Joensuu, H.: Artificial Neural Networks Applied to Survival Prediction in Breast Cancer. Oncology 57, 281–286 (1999)
Lakshmi, K.R., Krishna, M., Kumar, S.: Performance comparison of data mining techniques for prediction and diagnosis of breast cancer disease survivability. Asian Journal of Computer Science and Information Technology 3(5), 81–87 (2013)
Bellaachia, A., Guven, E.: Predicting Breast Cancer Survivability using Data Mining Techniques (April 2006)
Delen, D.: Analysis of cancer data: A data mining approach. Expert Systems 26(1), 100–112 (2009)
Kusiak, A., Dixon, B., Shaha, S.: Predicting survival time for kidney dialysis patients: A data mining approach. Computers in Biology and Medicine 35(4), 311–327 (2005)
Choi, J., Han, T., Park, R.: A Hybrid Bayesian Network Model for Predicting Breast Cancer Prognosis. Journal of Korean Society of Medical 15(1), 49–57 (2009)
Petrovsky, N., Tam, S., Brusic, V., Russ, G., Socha, L., Bajic, V.: Use of Artificial Neural Networks in Improving Renal Transplantation Outcomes. Graft 5(1), 6–13 (2002)
Osofisan, A., Adeyemo, O., Sawyerr, B., Eweje, O.: Prediction of Kidney Failure Using Artificial Neural Networks. European Journal of Scientific Research 61(4), 487 (2011)
Sun, B.-Y., Zhu, Z.-H., Li, J., Linghu, B.: Combined Feature Selection and Cancer Prognosis Using Support Vector Machine. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(6), 1671–1677 (2011)
Li, J., Serpen, G., Selman, S., Franchetti, M., Riesen, M., Schneider, C.: Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period. Int’l Journal of Medicine and Medical Sciences 1(4), 215–221 (2010)
Shadabi, F., Cox, R., Sharma, D., Petrovsky, N.: Use of Artificial Neural Networks in the Prediction of Kidney Transplant Outcomes. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3215, pp. 566–572. Springer, Heidelberg (2004)
Delen, D., Walker, G., Kadam, A.: Predicting breast cancer survivability: A comparison of three data mining methods. Artificial Intelligence in Medicine 34(2), 113–127 (2005)
Oztekin, A., Delen, D., Kong, Z.: Predicting the graft survival for heart–lung transplantation patients: An integrated data mining methodology. Int’l Journal of Medical Informatics 78(12), 84–96 (2009)
Ataide, E.C., Garcia, M., Mattosinho, T.J.A.P., Almeida, J.R.S., Escanhoela, C.A.F., Boin, I.F.S.F.: Predicting Survival After Liver Transplantation Using Up-to-Seven Criteria in Patients with Hepatocellular Carcinoma. Transplantation Proceedings 44(8), 2438–2440 (2012)
Egger, M., May, M., Chêne, G., Phillips, A., Ledergerber, B., Dabis, F., Costagliola, D., Monforte, A., Wolf, F., Reiss, P., Lundgren, J., Justice, A., Staszewski, S., et al.: Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy: A collaborative analysis of prospective studies. The Lancet 360(9327), 119–129 (2002)
Dom, R., Kareem, S., Abidin, B., Kamaruzaman, A., Kajindran, A.: The Prediction of AIDS Survival: A Data Mining Approach. In: WSEAS Int’l Conf. Multivariate Analysis and its Application in Science and Engineering, pp. 48–53 (2009)
Wang, K.-M., Makond, B., Wu, W.-L., Wang, K.-J., Lin, Y.: Optimal Data Mining Method For Predicting Breast Cancer Survivability. Int’l Journal of Innovative Management, Information & Production 3(2), 28–33 (2012)
Hong, Z., Wu, J., Smart, G., Kaita, K., Wen, S.W., Paton, S., Dawood, M.: Survival Analysis of Liver Transplant Patients in Canada 1997–2002. Transplantation Proceedings 38(9), 2951–2956 (2006)
Ahn, J., Kwon, J., Lee, Y.: Prediction of 1-year Graft Survival Rates in Kidney Transplantation: A Bayesian Network Model. In: INFORMS & KORMS, pp. 505–513 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Cardoso, D., Antunes, C. (2014). Exploring Temporal Dependencies to Perform Automatic Prognosis. In: Ślȩzak, D., Schaefer, G., Vuong, S.T., Kim, YS. (eds) Active Media Technology. AMT 2014. Lecture Notes in Computer Science, vol 8610. Springer, Cham. https://doi.org/10.1007/978-3-319-09912-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-09912-5_11
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09911-8
Online ISBN: 978-3-319-09912-5
eBook Packages: Computer ScienceComputer Science (R0)