Skip to main content

Sensing Subjective Well-Being from Social Media

  • Conference paper
Active Media Technology (AMT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8610))

Included in the following conference series:

Abstract

Subjective Well-being(SWB), which refers to how people experience the quality of their lives, is of great use to public policy-makers as well as economic, sociological research, etc. Traditionally, the measurement of SWB relies on time-consuming and costly self-report questionnaires. Nowadays, people are motivated to share their experiences and feelings on social media, so we propose to sense SWB from the vast user generated data on social media. By utilizing 1785 users’ social media data with SWB labels, we train machine learning models that are able to “sense” individual SWB. Our model, which attains the state-of-the-art prediction accuracy, can then be applied to identify large amount of social media users’ SWB in time with low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kosinskia, M., Stillwella, D., Graepelb, T.: Private traits and attributes are predictable from digital records of human behavior. PNAS 110(15), 5802–5850 (2013)

    Article  Google Scholar 

  2. Li, L., Li, A., Hao, B., Guan, Z., Zhu, T.: Predicting active users’ personality based on micro-blogging behaviors. PloS One 9(1), e84997 (2014)

    Google Scholar 

  3. Schwartz, H.A., Eichstaedt, J.C., et al.: Personality, gender, and age in the language of social media: The open-vocabulary approach. PLoS ONE 8(9), e73791 (2013)

    Google Scholar 

  4. Keyes, C.L.M., Magyar-Moe, J.L.: The measurement and utility of adult subjective well-being. In: Positive Psychological Assessment. American Psychological Association, pp. 411–425 (2003)

    Google Scholar 

  5. Oswald, A.J., Wu, S.: Objective confirmation of subjective measures of human well-being: Evidence from the usa. Science 327(5965), 576–579 (2010)

    Article  Google Scholar 

  6. Stiglitz, J.E., Sen, A., Fitoussi, J.P., et al.: Report by the commission on the measurement of economic performance and social progress. Paris: Commission on the Measurement of Economic Performance and Social Progress (2010)

    Google Scholar 

  7. OECD: OECD Guidelines on Measuring SubjectiveWell-being. OECD Publishing (2013), http://dx.doi.org/10.1787/9789264191655-en

  8. Schwartz, H.A., Eichstaedt, J.C., Kern, M.L., Dziurzynski, L., Agrawal, M., Park, G.J., Lakshmikanth, S.K., Jha, S., Seligman, M.E., Ungar, L., et al.: Characterizing geographic variation in well-being using tweets. In: Seventh International AAAI Conference on Weblogs and Social Media, ICWSM 2013 (2013)

    Google Scholar 

  9. Watson, D., Clark, L.A.: Development and validation of brief measures of positive and negative affect: The panas scales. Journal of Personality and Social Psychology 54(6), 719–727 (1998)

    Google Scholar 

  10. Ryff, C.D., Keyes, C.L.M.: The structure of psychological well-being revisited. Journal of Personality and Social Psychology 69(4), 719–727 (1995)

    Article  Google Scholar 

  11. Pennebaker, J.W., Stone, L.D.: Words of wisdom: Language use over the life span. Journal of Personality and Social Psychology 85(2), 291–301 (2003)

    Article  Google Scholar 

  12. Dodds, P.S., Harris, K.D., Kloumann, I.M., Bliss, C.A., Danforth, C.M.: Temporal patterns of happiness and information in a global social network: Hedonometrics and twitter. PLoS ONE 6(12), e26752 (2011)

    Google Scholar 

  13. Bollen, J., Mao, H.: Twitter mood as a stock market predictor. IEEE Computer 44(10), 91–94 (2011)

    Article  Google Scholar 

  14. Kramer, A.D.I.: An unobtrusive behavioral model of “gross national happiness”. In: CHI, pp. 287–290 (2010)

    Google Scholar 

  15. Diener, E., Emmons, R.A., Larsen, R.J., Griffin, S.: The satisfaction with life scale. Journal of Personality Assessment 49, 71–75 (1985)

    Article  Google Scholar 

  16. Burke, M., Marlow, C., Lento, T.: Social network activity and social well-being. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1909–1912. ACM (2010)

    Google Scholar 

  17. Quercia, D., Lambiotte, R., Stillwell, D., Kosinski, M., Crowcroft, J.: The personality of popular facebook users. In: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, pp. 955–964. ACM (2012)

    Google Scholar 

  18. Hao, B., Li, L., Li, A., Zhu, T.: Predicting mental health status on social media. In: Rau, P.L.P. (ed.) CCD/HCII 2013, Part II. LNCS, vol. 8024, pp. 101–110. Springer, Heidelberg (2013)

    Google Scholar 

  19. De Choudhury, M., Gamon, M., Counts, S., Horvitz, E.: Predicting depression via social media. In: AAAI Conference on Weblogs and Social Media (2013)

    Google Scholar 

  20. Brackett, M.A., Mayer, J.D.: Convergent, discriminant, and incremental validity of competing measures of emotional intelligence. Personality and Social Psychology Bulletin 29(9), 1147–1158 (2003)

    Article  Google Scholar 

  21. Duckworth, A.L., Kern, M.L.: A meta-analysis of the convergent validity of self-control measures. Journal of Research in Personality 45(3), 259–268 (2011)

    Article  Google Scholar 

  22. Graham, J.R.: Assessing personality and psychopathology with interviews. In: Handbook of Psychology: Assessment Psychology, vol. 10, p. 487 (2003)

    Google Scholar 

  23. Diener, E., Suh, E.M., Lucas, R.E., Smith, H.L.: Subjective well-being: Three decades of progress. Psychological Bulletin 125(2), 276 (1999)

    Article  Google Scholar 

  24. Gao, R., Hao, B., Li, H., Gao, Y., Zhu, T.: Developing simplified chinese psychological linguistic analysis dictionary for microblog. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds.) BHI 2013. LNCS, vol. 8211, pp. 359–368. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hao, B., Li, L., Gao, R., Li, A., Zhu, T. (2014). Sensing Subjective Well-Being from Social Media. In: Ślȩzak, D., Schaefer, G., Vuong, S.T., Kim, YS. (eds) Active Media Technology. AMT 2014. Lecture Notes in Computer Science, vol 8610. Springer, Cham. https://doi.org/10.1007/978-3-319-09912-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09912-5_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09911-8

  • Online ISBN: 978-3-319-09912-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics