Skip to main content

Towards Robust Framework for On-line Human Activity Reporting Using Accelerometer Readings

  • Conference paper
Active Media Technology (AMT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8610))

Included in the following conference series:

  • 2330 Accesses

Abstract

This paper investigates subsequent matching approach and feature-based classification for activity recognition using accelerometer readings. Recognition is done by similarity measure based on Dynamic Time Warping (DTW) on each acceleration axis. Ensemble method is proposed and comparative study is executed showing better and more stable results. Our scenario assumes that activity is recognized with very small latency. Results shows that hybrid approach is promising for activity reporting, i.e. different walking patterns, using of tools. The proposed solution is designed to be a part of decision support in fire and rescue actions at the fire ground.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akl, A., Valaee, S.: Accelerometer-based gesture recognition via dynamic-time warping, affinity propagation, & compressive sensing. In: IEEE ICASSP, pp. 2270–2273. IEEE (2010)

    Google Scholar 

  2. Alvarez, D., González, R.C., López, A., Alvarez, J.C.: Comparison of step length estimators from wearable accelerometer devices. In: 28th Annual International Conference of the IEEE, EMBS, pp. 5964–5967. IEEE (2006)

    Google Scholar 

  3. Auvinet, B., Berrut, G., Touzard, C., Moutel, L., Collet, N., Chaleil, D., Barrey, E.: Reference data for normal subjects obtained with an accelerometric device. Gait & Posture 16(2), 124–134 (2002), http://www.sciencedirect.com/science/article/pii/S096663620100203X

    Article  Google Scholar 

  4. Baek, J., Lee, G., Park, W., Yun, B.-J.: Accelerometer signal processing for user activity detection. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3215, pp. 610–617. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Bouten, C.V., Koekkoek, K.T., Verduin, M., Kodde, R., Janssen, J.D.: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Transactions on Biomedical Engineering 44(3), 136–147 (1997)

    Article  Google Scholar 

  6. Foerster, F., Smeja, M., Fahrenberg, J.: Detection of posture and motion by accelerometry: A validation study in ambulatory monitoring. Computers in Human Behavior 15(5), 571–583 (1999)

    Article  Google Scholar 

  7. Gafurov, D., Bours, P., Snekkenes, E.: User authentication based on foot motion. Signal, Image and Video Processing 5(4), 457–467 (2011)

    Article  Google Scholar 

  8. Gafurov, D., Helkala, K., Søndrol, T.: Biometric gait authentication using accelerometer sensor. Journal of Computers 1(7), 51–59 (2006)

    Article  Google Scholar 

  9. Guralnik, V., Srivastava, J.: Event detection from time series data. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–42. ACM (1999)

    Google Scholar 

  10. Han, T.S., Ko, S.-K., Kang, J.: Efficient subsequence matching using the longest common subsequence with a dual match index. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 585–600. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Jahankhani, P., Kodogiannis, V., Revett, K.: EEG signal classification using wavelet feature extraction and neural networks. In: IEEE JVA, pp. 120–124 (2006)

    Google Scholar 

  12. Junker, H., Amft, O., Lukowicz, P., Tröster, G.: Gesture spotting with body-worn inertial sensors to detect user activities. Patt. Recog. 41(6), 2010–2024 (2008)

    Article  MATH  Google Scholar 

  13. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowledge and Information Systems 7(3), 358–386 (2005)

    Article  Google Scholar 

  14. Krasuski, A., Jankowski, A., Skowron, A., Slezak, D.: From sensory data to decision making: A perspective on supporting a fire commander. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 3, pp. 229–236. IEEE (2013)

    Google Scholar 

  15. Lee, Y.-S., Cho, S.-B.: Activity recognition using hierarchical Hidden Markov Models on a smartphone with 3D accelerometer. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 460–467. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010)

    Article  Google Scholar 

  17. Mayagoitia, R.E., Nene, A.V., Veltink, P.H.: Accelerometer and rate gyroscope measurement of kinematics: An inexpensive alternative to optical motion analysis systems. Journal of Biomechanics 35(4), 537–542 (2002)

    Article  Google Scholar 

  18. Meijer, G.A.L., Westerterp, K.R., Verhoeven, F.M.H., Koper, H.B.M., ten Hoor, F.: Methods to assess physical activity with special reference to motion sensors and accelerometers. IEEE Trans. on Biomedical Engineering 38(3), 221–229 (1991)

    Article  Google Scholar 

  19. Preece, S.J., Goulermas, J.Y., Kenney, L.P.J., Howard, D., Meijer, K., Crompton, R.: Activity identification using body-mounted sensors’ review of classification techniques. Physiological Measurement 30(4), R1 (2009)

    Google Scholar 

  20. Pylvänäinen, T.: Accelerometer based gesture recognition using continuous HMMs. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 639–646. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: AAAI, vol. 5, pp. 1541–1546 (2005)

    Google Scholar 

  22. Sant’Anna, A., Wickstrom, N.: Developing a motion language: Gait analysis from accelerometer sensor systems. In: 3rd International Conference on Pervasive Computing Technologies for Healthcare, pp. 1–8. IEEE (2009)

    Google Scholar 

  23. Shin, S.H., Park, C.G., Kim, J.W., Hong, H.S., Lee, J.M.: Adaptive step length estimation algorithm using low-cost MEMS inertial sensors. In: IEEE SAS, pp. 1–5. IEEE (2007)

    Google Scholar 

  24. Wang, W., Guo, Y., Huang, B., Zhao, G., Liu, B., Wang, L.: Analysis of filtering methods for 3D acceleration signals in body sensor network. In: ISBB, pp. 263–266 (November 2011)

    Google Scholar 

  25. Weiss, A., Herman, T., Plotnik, M., Brozgol, M., Maidan, I., Giladi, N., Gurevich, T., Hausdorff, J.M.: Can an accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson’s disease? Medical Engineering & Physics 32(2), 119–125 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Meina, M., Celmer, B., Rykaczewski, K. (2014). Towards Robust Framework for On-line Human Activity Reporting Using Accelerometer Readings. In: Ślȩzak, D., Schaefer, G., Vuong, S.T., Kim, YS. (eds) Active Media Technology. AMT 2014. Lecture Notes in Computer Science, vol 8610. Springer, Cham. https://doi.org/10.1007/978-3-319-09912-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09912-5_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09911-8

  • Online ISBN: 978-3-319-09912-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics