Skip to main content

Graph Clustering Using Mutual K-Nearest Neighbors

  • Conference paper
Active Media Technology (AMT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8610))

Included in the following conference series:

Abstract

Most real world networks like social networks, protein-protein interaction networks, etc. can be represented as graphs which tend to include densely connected subgroups or modules. In this work, we develop a novel graph clustering algorithm called G-MKNN for clustering weighted graphs based upon a node affinity measure called ‘Mutual K-Nearest neighbors’ (MKNN). MKNN is calculated based upon edge weights in the graph and it helps to capture dense low variance clusters. This ensures that we not only capture clique like structures in the graph, but also other hybrid structures. Using synthetic and real world datasets, we demonstrate the effectiveness of our algorithm over other state of the art graph clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Girvan, M., Newman, M.E.J.: Community Structure in Social and Biological Networks. Proceedings of the National Academy of Sciences of the USA 99, 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Spirin, V., Mirny, L.A.: Protein Complexes and Functional Modules in Molecular Networks. Proceedings of the National Academy of Sciences of the USA, 12123–12128 (2003)

    Google Scholar 

  3. Hu, Z., Bhatnagar, R.: Clustering Algorithm based on Mutual K-Nearest Neighbor Relationships. Journal of Statistical Analysis and Data Mining 5, 100–113 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Guimer‘a, R., Nunes Amaral, L.A.: Functional Cartography of Complex Metabolic Networks. Nature 433, 895–900 (2005)

    Article  Google Scholar 

  5. Newman, M.E.J.: Fast Algorithm for detecting Community Structure in Networks. Phys. Rev. E. 69 (2004)

    Google Scholar 

  6. Clauset, A., Newman, M.E.J., Moore, C.: Finding Community Structure in very large Networks. Phys. Rev. E. 70 (2004)

    Google Scholar 

  7. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast Unfolding of Communities in Large Networks. Journal of Statistical Mechanics: Theory and Experiment 10 (2008)

    Google Scholar 

  8. Fortunato, S., Barth´elemy, M.: Resolution Limit in Community Detection. PNAS 104 (2007)

    Google Scholar 

  9. Bader, G.D., Hogue, C.W.V.: An Automated Method for finding Molecular Complexes in Large Protein Interaction Networks. BMC Bioinformatics 4 (2003)

    Google Scholar 

  10. Kalna, G., Higham, D.: A Clustering Coefficient for Weighted Networks, with Application to Gene Expression Data. J. AI Comm. -Network Anal. in Nat. Sci. and Eng. 20, 263–271 (2007)

    MATH  MathSciNet  Google Scholar 

  11. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht (2000)

    Google Scholar 

  12. Liu, G., Wong, L., Chua, H.N.: Complex Discovery from Weighted PPI Networks. J. Bioinformatics 25, 1891–1897 (2009)

    Article  Google Scholar 

  13. Shannon, P., et al.: Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 13, 2498–2504 (2003)

    Article  Google Scholar 

  14. Brohée, S.: Using the NeAT Toolbox to compare Networks to Networks, Clusters to Clusters, and Network to Clusters. Methods Mol. Biol. 804, 327–342 (2011)

    Article  Google Scholar 

  15. Scherrer, A.: (2008), http://perso.uclouvain.be/vincent.blondel/research/louvain.html

  16. Collins, S.R., et al.: Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces Cerevisiae. Mol. Cell. Proteomics 6, 439–450 (2007)

    Article  Google Scholar 

  17. Gavin, A.C., et al.: Proteome Survey reveals Modularity of the Yeast Cell Machinery. Nature 440, 631–636 (2006)

    Article  Google Scholar 

  18. Krogan, N., et al.: Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature 440, 637–643 (2006)

    Article  Google Scholar 

  19. Cherry, J.M., et al.: SGD: Saccharomyces Genome Database. Nucleic Acids Res. 26, 73–79 (1998)

    Article  Google Scholar 

  20. Brohée, S., van Helden, J.: Evaluation of Clustering Algorithms for Protein-Protein Interaction Networks. BMC Bioinformatics 7 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sardana, D., Bhatnagar, R. (2014). Graph Clustering Using Mutual K-Nearest Neighbors. In: Ślȩzak, D., Schaefer, G., Vuong, S.T., Kim, YS. (eds) Active Media Technology. AMT 2014. Lecture Notes in Computer Science, vol 8610. Springer, Cham. https://doi.org/10.1007/978-3-319-09912-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09912-5_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09911-8

  • Online ISBN: 978-3-319-09912-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics