
Lecture Notes in Computer Science 8636
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Claire Le Goues Shin Yoo (Eds.)

Search-Based
Software Engineering
6th International Symposium, SSBSE 2014
Fortaleza, Brazil, August 26-29, 2014
Proceedings

13

Volume Editors

Claire Le Goues
Carnegie Mellon University
School of Computer Science
Institute for Software Research
5000 Forbes Avenue, Pittsburgh, PA 15213, USA
E-mail: clegoues@cs.cmu.edu

Shin Yoo
University College London
Department of Computer Science
Gower Street, London WC1E 6BT, UK
E-mail: shin.yoo@ucl.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-09939-2 e-ISBN 978-3-319-09940-8
DOI 10.1007/978-3-319-09940-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014945224

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Message from the SSBSE 2014 General Chair

SBSE is growing up! In its sixth edition, the conference left home and expanded
its reach in a process of becoming a truly global forum. Brazil was proudly chosen
to kick off this process, mainly in recognition of its strong and still growing
SBSE community. Besides innovating in its location, SSBSE 2014 implemented
a series of novelties. First, it stood alone once again. As a test of maturity, this
decision sheds light on how independent and solid the SBSE field has become.
Second, it brought an all-inclusive experience, allowing for a much higher level
of integration among participants, in turn strengthening the community and
helping create a much more cooperative environment. Finally, it implemented a
double-blind submission and review process for the first time, providing as fair
and objective an evaluation of the submitted papers as possible.

Obviously, this historical event would not have been possible without the
help of many people, who I would like to recognize and thank. First of all, I
would like to thank our program chairs, Shin Yoo (University College London,
UK) and Claire Le Goues (Carnegie Mellon University, USA). They led the
review process with great competence and dedication and put together a very
rich and high-quality scientific program. I extend this recognition to all members
of our Program Committee, for the dedicated work in the review and selection of
our papers. Next, I thank our Graduate Student Track chair, Nadia Alshahwan
(University College London, UK), and our SBSE Challenge Track chair (Márcio
de Oliveira Barros, Federal University of the State of Rio de Janeiro, Brazil), for
their hard work on organizing those two special tracks. I would also like to give
special thanks to my friend Allysson Araújo (State University of Ceará, Brazil),
our Web chair, for accepting the important challenge of creating and maintaining
our website and operating this task with perfection. Also, I thank our publicity
chair, Sina Shamshiri (University of Sheffield, UK), for the important job of
keeping everybody informed about our event. Finally, I also thank the SSBSE
Steering Committee, chaired by Mark Harman (University College London, UK),
for their vote of confidence in giving us the privilege of organizing SSBSE 2014.

I must also mention and thank our long list of sponsors, who believed in our
proposal and provided confidence in me and in the field of SBSE. Without their
support, SSBSE 2014 would not have been nearly so special.

I hope you enjoy reading these proceedings as much as I enjoyed organizing
the event.

August 2014 Jerffeson Teixeira de Souza

VI Preface

Message from the SSBSE 2014 Program Chairs

On behalf of the SSBSE 2014 Program Committee, we are pleased to present
the proceedings of the 6th International Symposium on Search-Based Software
Engineering. This year brought SSBSE to South America for the first time, in the
oceanside paradise of Fortaleza, Brazil! SSBSE 2014 continued to bring together
the international community of SSBSE researchers to exchange and discuss ideas
and celebrate the latest progress in this rapidly advancing field.

We are delighted to report that we had a record-breaking 51 submissions to
our four tracks: 32 Full Research Track submissions, eight Graduate Student
Track submissions, three Fast Abstract submissions, and eight SBSE Challenge
Track submissions. Submissions came from 19 different countries: Argentina,
Austria, Brazil, Canada, China, the Czech Republic, France, Germany, India,
Ireland, Italy, Luxembourg, Norway, the Russian Federation, Sweden, Switzer-
land, Tunisia, the UK, and the USA. After each submission was reviewed by at
least three members of the Program Committee, we accepted 14 Full Research
Track papers, one Fast Abstract track paper, three Graduate Student Track
papers, and four SBSE Challenge Track papers.

We would like to thank the members of the SSBSE 2014 Program Commit-
tee. Without their continued support, we would not have been able to further
improve the quality of the submissions and maintain the symposium’s tradi-
tion of a high-quality technical program. The general chair, Jerffeson Teixeira
de Souza, deserves a special mention for leading an excellent team, especially
locally, to make the conference an unforgettable experience for everyone. In ad-
dition, Márcio Barros worked hard to manage the fast-growing SBSE Challenge
Track, while Nadia Alshahwan oversaw the process of handling the Graduate
Student Track. The technical program would not have been the same without
their effort, for which we especially want to thank them.

As an experiment, this year we implemented a double-blind review procedure
for the main research track of the SSBSE program. Our intention was to enable
as fair a review process as possible, and recent evidence suggests that removing
information like institutional affiliation, country of origin, and author name from
submissions under review can contribute to this goal. We want to thank both
the Program Committee and our submitting authors for their patience with a
new and largely unfamiliar system, and for allowing us to experiment with our
review procedure. We encourage those who participated to continue sharing their
perspectives on this and other issues related to review and feedback quality.
Peer review remains a collaborative and work-in-progress system, and we are
interested in the community’s experience to help inform future decisions for
both this conference and others like it.

The symposium has an excellent tradition of hearing and learning from world
experts in both software engineering and meta-heuristic optimization, and we are
glad to report that this year was not an exception. We had the honor of having a
keynote from Prof. Mauro Pezzè, whose research on software redundancy bears
a strong connection to SBSE. Furthermore, we also had a keynote from Dr.
Marc Schoenauer, who brought us up to date with progress in adaptive learning

Preface VII

research. Finally, the Brazilian SBSE community warmly and enthusiastically
invited Prof. Mark Harman to present a review of the field.

We would like to thank all the authors who submitted papers to SSBSE
2014, regardless of the outcome, and everyone who attended the symposium.
We hope that, with these proceedings, anyone who did not have a chance to be
at Fortaleza will have the opportunity to experience the exuberance of the SBSE
community.

August 2014 Claire Le Goues
Shin Yoo

Conference Organization

General Chair

Jerffeson Teixeira de Souza Universidade Estadual do Ceará, Brazil

Program Chairs

Claire Le Goues Carnegie Mellon University, USA
Shin Yoo University College London, UK

Graduate Students Track Chair

Nadia Alshahwan University College London, UK

SBSE Challenge Track Chair

Márcio de Oliveira Barros Universidade Federal do Estado do Rio de
Janeiro, Brazil

Organizing Committee

Sina Shamshiri University of Sheffield, UK
Allysson Allex de Paula Araújo Universidade Estadual do Ceará, Brazil

Program Committee

Enrique Alba University of Málaga, Spain
Shaukat Ali Simula Research Laboratory, Norway
Giuliano Antoniol Ecole Polytechnique de Montréal, Canada
Andrea Arcuri Schlumberger & Simula Research Laboratory,

Norway
Leonardo Bottaci University of Hull, UK
Betty Cheng Michigan State University, USA
Francisco Chicano University of Málaga, Spain
Myra Cohen University of Nebraska-Lincoln, USA
Massimiliano Di Penta University of Sannio, Italy
Arilo Claudio Dias-Neto Universidade Federal do Amazonas, Brazil

X Conference Organization

Robert Feldt Blekinge Institute of Technology, Sweden
Gordon Fraser University of Sheffield, UK
Mathew Hall University of Sheffield, UK
Mark Harman University College London, UK
Colin Johnson University of Kent, UK
Gregory Kapfhammer Allegheny College, USA
Marouane Kessentini University of Michigan, USA
Dongsun Kim University of Luxembourg, Luxembourg
Yvan Labiche Carleton University, Canada
Raluca Lefticaru University of Bucharest, Romania
Zheng Li Beijing University of Chemical Technology,

China
Spiros Mancoridis Drexel University, USA
Auri Marcelo Rizzo Vincenzi Universidade Federal de Goiás, Brazil
Tim Menzies North Carolina State University, USA
Fitsum Meshesha Kifetew Fondazione Bruno Kessler - IRST, Italy
Leandro Minku University of Birmingham, UK
Martin Monperrus University of Lille, France

Mel Ó Cinnéide University College Dublin, Ireland
Justyna Petke University College London, UK
Pasqualina Potena University of Alcalá, Spain
Simon Poulding University of York, UK
Xiao Qu ABB Corporate Research, USA
Marc Roper University of Strathclyde, UK
Federica Sarro University College London, UK
Chris Simon University of the West of England, UK
Lee Spector Hampshire College, USA
Angelo Susi Fondazione Bruno Kessler - IRST, Italy
Jerry Swan University of Stirling, UK
Paolo Tonella Fondazione Bruno Kessler - IRST, Italy
Silvia Vergilio Universidade Federal do Paraná, Brazil
Tanja E.J. Vos Universidad Politècnica de València, Spain
David White University of Glasgow, UK
Xin Yao University of Birmingham, UK

External Reviewers

Kenyo Faria Universidade Federal de Goiás, Brazil
Eduardo Freitas Universidade Federal de Goiás, Brazil
Damiano Torre Carleton University, Canada
Shuai Wang Simula Research Laboratory, Norway
Zhihong Xu University of Nebraska Lincoln, USA

Conference Organization XI

Steering Committee

Mark Harman (Chair) University College London, UK
Andrea Arcuri Schlumberger & Simula Research Laboratory,

Norway
Massimiliano Di Penta University of Sannio, Italy
Gordon Fraser University of Sheffield, UK

Mel Ó Cinnéide University College Dublin, Ireland
Jerffeson Teixeira de Souza Universidade Estadual do Ceará, Brazil
Joachim Wegener Berner and Mattner, Germany
David White University of Glasgow, UK
Yuanyuan Zhang University College London, UK

XII Conference Organization

Sponsors

Keynote Addresses

Intrinsic Software Redundancy:

Applications and Challenges
(Extended Abstract)

Mauro Pezzè

University of Lugano, Switzerland and University of Milano Bicocca, Italy

mauro.pezze@usi.ch

Abstract. Search-based software engineering has many important ap-
plications. Here, we identify a novel use of search-based techniques to
identify redundant components. Modern software systems are intrinsi-
cally redundant, and such redundancy finds many applications. In this
paper we introduce the concept of intrinsic redundancy, and we present
some important applications to develop self-healing systems and auto-
matically generate semantically relevant oracles. We then illustrate how
search-based software engineering can be used to automatically identify
redundant methods in software systems, thus paving the road to an ef-
ficient exploitation of intrinsic redundancy, and opening new research
frontiers for search-based software engineering.

Reliability is becoming a necessity for many software systems and redundancy
is its cornerstone. Well defined processes, efficient design approaches, careful
coding and pervasive testing and analysis can build excellent software products,
but cannot completely eliminate failures in the field, and the software products
may not meet a sufficient reliability level.

The classic way of improving the reliability of systems of different kinds ex-
ploits some form of redundancy. RAID disks (Redundant Array of Independent
Disks) are a successful example of the use of redundancy for improving hard-
ware reliability [1], the HDFS (Hadoop Distributed File System) is a popular
example of the use of redundancy for improving data reliability [2], N-version
programming is a classic approach that exploits redundancy for improving soft-
ware reliability [3].

In these different approaches, redundancy is deliberately added to the system
to improve reliability, and comes with additional costs that depend on the goals.
In hardware systems, redundancy aims to reduce the impact of production de-
fects, and is added at the production level, thus impacts mostly on production
costs. In database systems, redundancy is added at the server level and impacts
mostly on infrastructure costs. N-version programming targets design errors and
is added at the design level, where the impact on costs is relevant.

We point to a different kind of software redundancy that is intrinsically
present in software systems, and is thus available without additional design or
production costs. Our empirical investigation indicates that such form of re-
dundancy is widely spread in modern software systems and is a consequence

XVI M. Pezzè

of good design practice. Our work shows that this form of redundancy can be
automatically synthetized by means of search-based techniques [4], and can be
successfully exploited in many ways, including the automatic generation of self-
healing mechanisms [5] and of semantic oracles [6].

Redundancy is present at many abstraction levels, here we discuss it refer-
ring to redundancy at method call level. We say that two methods are redundant
when their execution is both different and produces equivalent results. Results
are equivalent when both the output and the final state are indistinguishable
from an external observer viewpoint, as formalised with the concept of obser-
vational equivalence [7]. Executions are different when they involve different
statements or the same statements but in different order.

Redundancy is intrinsically present in software systems due to modern design
practice. Design for reusability often leads to the same functionality implemented
in different methods to improve compatibility with different uses, as it happened
in containers that provide different methods to add one or more elements to the
container. Performance optimisation frequently results in different methods im-
plementing the same functionality, albeit with different, optimised code, like the
trove4J library that duplicates many of the functionalities offered by the stan-
dard Java containers. Backward compatibility is obtained by keeping the old
versions of the reimplemented functionalities thus offering redundant methods.
Redundancy is massively present in modern software systems: Our manual in-
spection of several popular libraries including Apache Ant, Google Guava, Joda
Time, Eclipse SWT, graphstream and Lucene identified over 4,700 redundant
methods, with an average of 5 redundant methods per class.

Intrinsic redundancy can be exploited to build self-healing mechanisms. Once
identified a set of redundant methods, we can automatically deploy a mechanism
that substitutes a failing method with a redundant one to avoid the failure. We
call such approach automatic workaround. The design of automatic workarounds
requires a mechanism to reveal failures, we rely on assertions embedded in the
code, a method to roll back to a correct state, we rely on an optimised rollback
mechanism, and a method to execute a redundant method, we rely on a source
to source code transformation [8, 5].

Another interesting application of intrinsic redundancy is the automatic syn-
thesis of semantically relevant test oracles. The increasing availability of au-
tomated test cases exacerbates the need of automated oracles, and the cost
pressure of software development calls for automatically generated oracles. Or-
acles that can be easily generated automatically, such as implicit oracles, can
only reveal simple failures, like unhandled exceptions, while oracles derived from
formal specifications can reveal failures that depend on the program semantics,
but require formal specifications that are expensive to produce. We exploit the
intrinsic redundancy of software systems to automatically generate test oracles
that can reveal failures related to the program semantics by cloning the program
state before executing a method call, executing the original call on the original
state and the corresponding redundant call on the cloned state, and comparing
the results. In this way we can reveal discrepancies between the executions of

Intrinsic Software Redundancy: Applications and Challenges XVII

methods that should produce equivalent results and reveal failures related to the
program semantics. We call such oracles cross-checking oracles [6].

The automatic synthesis of both self-healing mechanisms and automated or-
acles requires a set of redundant program elements as input. We can automati-
cally synthetize redundant methods without expensive formal specifications by
exploiting search-based techniques. We use a genetic algorithm for synthetizing
a method call equivalent to a given method for an initial scenario (usually one
or few test cases). We then look for a counterexample that, if found, gives us
a new scenario to search for a redundant method, and, if not found, confirms
the redundancy of the original and the identified method. We can automatically
synthetize a large amount of redundant methods by applying the approach to
all methods in the target software system.

Acknowledgement. We would like to acknowledge the Swiss National
Foundation (SNF) for supporting this work through the projects Perseos (SNF
200021 116287), Wash (SNF 200020 124918) and Shade (SNF 200021 138006),
and the many people who contributed to the work, Antonio Carzaniga, Alberto
Goffi, Alessandra Gorla, Andrea Mattavelli, Nicolò Perino and Paolo Tonella.

References

1. Patterson, D., Gibson, G., Katz, R.: A case for redundant arrays of inexpensive
disks (RAID). SIGMOD Record 17(3), 109–116 (1988)

2. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file sys-
tem. In: Proceedings of the IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), pp. 1–10. IEEE Computer Society (2010)

3. Avizienis, A.: The N-version approach to fault-tolerant software. IEEE Transactions
on Software Engineering 11(12), 1491–1501 (1985)

4. Goffi, A., Gorla, A., Mattavelli, A., Pezzè, M., Tonella, P.: Search-based synthesis of
equivalent method sequences. In: Proceedings of the 2014 ACM Sigsoft Conference
on the Foundations of Software Engineering (ACM FSE). ACM (2014)

5. Carzaniga, A., Gorla, A., Mattavelli, A., Perino, N., Pezzè, M.: Automatic recov-
ery from runtime failures. In: Proceedings of the 2013 International Conference on
Software Engineering (ICSE), pp. 782–791. IEEE Press (2013)

6. Carzaniga, A., Goffi, A., Gorla, A., Mattavelli, A., Pezzè, M.: Cross-checking ora-
cles from intrinsic software redundancy. In: Proceedings of the 2014 International
Conference on Software Engineering (ICSE). IEEE Press (2014)

7. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de
Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309.
Springer, Heidelberg (1980)

8. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic workarounds for web ap-
plications. In: Proceedings of the 2010 ACM Sigsoft Conference on the Foundations
of Software Engineering (ACM FSE), pp. 237–246. ACM (2010)

Programming by Ranking

(Extended Abstract)

Marc Schoenauer1,2 and Michèle Sebag2,1

1 TAO Project-team, INRIA Saclay - Île-de-France
2 Laboratoire de Recherche en Informatique (UMR CNRS 8623)

Université Paris-Sud, 91128 Orsay Cedex, France

FirstName.LastName@inria.fr

As early as 1904, Spearman [19] proposed to use ranks rather than actual values
to unveil correlations between data of unknown distribution. This was the begin-
ning of rank statistics and non-parametric tests. Still, in practice non-parametric
statistics are generally less accurate than their parametric counterparts (even
though more widely applicable), and the latter are often used even though the
underlying hypotheses (normally distributed data, size of sample) are not satis-
fied.

In the context of optimization and programming however, rank-based ap-
proaches might prove more beneficial that value-based approaches even in cases
where both approaches apply. Three test cases related to Algorithm Engineering
will be surveyed here, dealing with Black-Box Optimization (Section 1), Algo-
rithm Selection using ideas from recommender systems (Section 2) and robot
programming by weak experts (Section 3).

1 Rank-SVM Surrogate Models for CMA-ES

In the general framework of (black-box) continuous optimization, the human
mind cannot always easily grasp quantified measures to assess the quality of a
potential solution. In a famous example of interactive optimization [8], when the
coffee maker asks some coffee experts how close the taste of a coffee is from a
targeted coffee taste, there does not even exist a scale that could be used by all
experts to put a number on taste proximity. However, every expert can assess
whether a coffee is closer or farther than another one with respect to the target
taste.

Quantifying differences might be a problem even when there is no human
being in the loop. More generally, the optimization of a given real-valued func-
tion F is unchanged if F undergoes any monotonous transformation (from pre-
conditioning to non-linear regularization), although this can have a huge impact
on the efficiency of most optimization algorithms. Comparison-based algorithms
de facto possess such invariance w.r.t. monotonous transformations. In the case
of expensive optimization problems, the usual strategy is to learn an approxima-
tion a.k.a. surrogate model of F by numerical regression; this strategy however
destroys the invariance property as the surrogate model depends on the values
of F . Ordinal regression, aka rank-based learning, instead defines a surrogate

Programming by Ranking XIX

model which only preserves the ranks of the F values [10]. The use of such
rank-based surrogates preserves the invariance property in comparison-based
optimization [17]. Interestingly, the Covariance Matrix Adaptation Evolution
Strategy [7] (CMA-ES, considered today the state-of-the-art method in Black-
Box optimization) can be tightly integrated with rank-based learning, thus pre-
serving all invariance properties of CMA-ES [14], while enforcing the control
and adaptation of the learning hyper-parameters [15]. The resulting surrogate-
augmented algorithm further improves the performance of the basic variants of
CMA-ES on the BBOB (Black-Box Optimization Benchmarking [5]) platform.

2 Algorithm Selection as a Collaborative Filtering

In the domain of recommendation algorithms, similarly, movie rating can vary
a lot from user to user, clearly raising a scaling issue in recommendation sys-
tems [4]. On the opposite, any user is able to rank the movies he has seen. The
CofiRank method [21] uses the Maximal Margin Matrix Factorization to approxi-
mate rankings rather than ratings, bringing more robustness in the recommender
system.

Similar issues arise in algorithm selection, a key issue to get peak performance
from algorithm portfolios. It turns out that algorithm selection can be formalized
as a collaborative filtering problem [20], by considering that a problem instance
“prefers” the algorithms with better performance on this particular instance.
Learning the rating, i.e. the actual performance of the algorithm on the problem
instance raises significant difficulties, as the performance of an algorithm can
vary by orders of magnitude depending on the problem instance. Learning how
to rank algorithms depending on the problem instance can instead be achieved
efficiently [16].

A main difficulty in algorithm selection is the handling of the so-called ‘cold
start’ problem: how to choose an algorithm for a brand-new instance? Former
algorithm selection methods relied on known features describing the problem in-
stances − however with mixed results [12]. But the Matrix Factorization method
amounts to identify latent features that are by construction well suited to the
algorithm selection problem. Supervised learning of a mapping between known
features and those latent features is the key to solving the cold-start problem,
as demonstrated in [16] on three problem domains (the 2008 CSP and 2011 SAT
competitions, and the BBOB platform).

3 Programming by Feedback

In the context of adapting software or hardware agents (e.g., a companion robot)
to the precise requirements or preferences of their human users, the limitation
comes from both the quantity and the quality of what can be asked to the user.
Whereas you can ask experts to demonstrate the desired behavior to the robot,

XX M. Schoenauer and M. Sebag

as in Inverse Reinforcement Learning approaches [1, 11], you can only ask limited
amount of feedback to the average user. On the one hand, the feedback is uneasily
provided through numbers; on the other hand, even a preference feedback (it is
better, it is worse) can be noisy and inconsistent.

Preference-based reinforcement learning, hybridizing reinforcement learning
and learning to rank, has been proposed to handle domains with no numerical
rewards [6], allowing the user to compare and rank the agent behaviors [22,
2]. The key issues are to deliver a good performance with a limited number of
comparison queries, and particularly to stand the comparison errors and the
possible user inconsistencies. These issues have been addressed in [3], enabling
the agent to model the user’s competence; indeed the cooperation between two
intelligent partners is better supported by each partner having a model of the
other one (see e.g. [13]).

From the user point of view, the game is similar to the well-known children’s
game “Hot-and-Cold”: she only has to tell the robot whether each new demon-
strated behavior is better or worse than the previous one − and she can be
inconsistent (or her goal can evolve). From the robot perspective, the idea is to
gradually learn the user’s utility function in the demonstration space, accounting
for the user’s estimated competence, and, based on the current utility function,
to optimize in the solution space the behavior with respect to some maximal
posterior utility, demonstrating the best one to the user. Experimental results
on artificial RL benchmark problems favorably compare to the state of the art
[22], and proof-of-principle results are obtained on a real NAO robot, though on
elementary tasks: 5 (resp. 24) interactions with the user are required to solve
problems involving 13 (resp. 20) states spaces.

4 Conclusion

There is emerging evidence that the art of programming could be revisited in the
light of the current state of the art in Machine Learning and Optimization. While
the notion of formal specifications has been at the core of software sciences for
over three decades, the relevance of ML-based approaches has been demonstrated
in the domain of pattern recognition since the early 90s.

Along this line, a new trend dubbed Programming by Optimization advocates
algorithm portfolios endowed with a control layer such that determining what
works best in a given use context [could be] performed automatically, substituting
human labor by computation [9]. Similarly, it has been suggested that the state
of the art can be improved by configuring existing techniques better rather than
inventing new learning paradigms [18].

Going further, we propose the Programming by Ranking paradigm, extend-
ing the above Programming by Feedback; several proofs of principle thereof in
different domains have been described, related to expensive optimization, al-
gorithm selection and policy design. Ultimately, our claim is that learning-
to-rank Machine Learning algorithms, based on minimal and possibly noisy

Programming by Ranking XXI

specification/information/feedback from the user, have today reached the come-
of-age and should be considered whenever optimization at large is at stake.

References

1. Abbeel, P.: Apprenticeship Learning and Reinforcement Learning with Application
to Robotic Control. PhD thesis, Stanford University (2008)

2. Akrour, R., Schoenauer, M., Sebag, M.: April: Active preference learning-based
reinforcement learning. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML
PKDD 2012, Part II. LNCS, vol. 7524, pp. 116–131. Springer, Heidelberg (2012)

3. Akrour, R., Schoenauer, M., Sebag, M., Souplet, J.-C.: Programming by feedback.
In: ICML. volume to appear of ACM Int. Conf. Proc. Series (2014)

4. Bennett, J., Lanning, S.: The netflix prize. In: Proc. 13th Intl Conf. on Knowledge
Discovery and Data Mining (KDD) Cup and Workshop (2007)

5. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimiza-
tion benchmarking 2010: Experimental setup. Technical Report 2009/21, Research
Center PPE (2010)

6. Fürnkranz, J., Hüllermeier, E., Cheng, W., Park, S.-H.: Preference-based reinforce-
ment learning. Machine Learning 89(1-2), 123–156 (2012)

7. Hansen, N., Müller, S., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computation 11(1), 1–18 (2003)

8. Herdy, M.: Evolution strategies with subjective selection. In: Ebeling, W., Rechen-
berg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN IV. LNCS, vol. 1141, pp. 22–31.
Springer, Heidelberg (1996)

9. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
10. Joachims, T.: A support vector method for multivariate performance measures.

In: Proceedings of the 22nd International Conference on Machine Learning, pp.
377–384. ACM (2005)

11. Konidaris, G., Kuindersma, S., Barto, A., Grupen, R.: Constructing skill trees for
reinforcement learning agents from demonstration trajectories. In: NIPS 23, pp.
1162–1170 (2010)

12. Kotthoff, L.: Hybrid regression-classification models for algorithm selection. In: De
Raedt, L., et al. (eds.) Proc. ECAI 2012, pp. 480–485. IOS Press (2012)

13. Lörincz, A., Gyenes, V., Kiszlinger, M., Szita, I.: Mind model seems necessary
for the emergence of communication. Neural Information Processing - Letters and
Reviews 11(4-6), 109–121 (2007)

14. Loshchilov, I., Schoenauer, M., Sebag, M.: Comparison-Based Optimizers Need
Comparison-Based Surrogates. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 364–373. Springer, Heidelberg (2010)

15. Loshchilov, I., Schoenauer, M., Sebag, M.: Self-Adaptive Surrogate-Assisted cma-
es. In: ACM-GECCO, pp. 321–328. ACM Press (July 2012)

16. Misir, M., Sebag, M.: Algorithm selection as a collaborative filtering problem.
Technical report, INRIA (December 2013)

17. Runarsson, T.P.: Ordinal Regression in Evolutionary Computation. In: Runarsson,
T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.)
PPSN IX. LNCS, vol. 4193, pp. 1048–1057. Springer, Heidelberg (2006)

18. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: NIPS, pp. 2960–2968 (2012)

XXII M. Schoenauer and M. Sebag

19. Spearman, C.: The proof and measurement of association between two things. The
American Journal of Psychology 100(3-4), 441–471 (1904)

20. Stern, D., Herbrich, R., Graepel, T., Samulowitz, H., Pulina, L., Tacchella, A.:
Collaborative expert portfolio management. In: AAAI, pp. 179–184 (2010)

21. Weimer, M., Karatzoglou, A., Le, Q., Smola, A.: COFI-RANK: Maximum Margin
Matrix Factorization for Collaborative Ranking. In: NIPS 2007, pp. 222–230 (2007)

22. Wilson, A., Fern, A., Tadepalli, P.: A Bayesian approach for policy learning from
trajectory preference queries. In: NIPS, pp. 1142–1150 (2012)

Invited Talk

SBSE: Introduction, Motivation,

Results and Directions

Mark Harman

University College London, CREST Centre, UK

Abstract. This talk at SSBSE 2014 will provide an introduction to
SBSE [4, 6, 14, 18], drawing on results from recent work and the many
surveys of SBSE for requirements [30], predictive modelling [1, 8] software
project management [5], cloud engineering [15], design [27], maintenance
[25], testing [2, 22], refactoring [7, 23] and repair [20]. The talk will be
partly interactive, discussing the motivation for computational search
in software engineering. We will also explore why it is that, among all
engineering disciplines, it is software engineering for which computa-
tional search finds its most compelling and promising application [9].
This theme will be developed by considering recent work that optimises
the engineering material at the heart of all software systems: the source
code itself. We will focus, in particular, on recent developments in Dy-
namic Adaptive SBSE [10, 11, 13] and genetic improvement for repair [21,
20], non-functional enhancement [3, 16, 19, 24, 28, 29], source code trans-
plantation [17, 26] and Software Product Line optimisation [12].

References

1. Abbeel, P.: Apprenticeship Learning and Reinforcement Learning with Application
to Robotic Control. PhD thesis, Stanford University (2008)

2. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing
for non-functional system properties. Information and Software Technology 51(6),
957–976 (2009)

3. Arcuri, A., White, D.R., Clark, J.A., Yao, X.: Multi-objective improvement of
software using co-evolution and smart seeding. In: 7th SEAL, pp. 61–70 (2008)

4. Colanzi, T.E., Vergilio, S.R., Assuncao, W.K.G., Pozo, A.: Search based software
engineering: Review and analysis of the field in Brazil. Journal of Systems and
Software 86(4), 970–984 (2013)

5. Ferrucci, F., Harman, M., Sarro, F.: Search based software project management.
In: Software Project Management in a Changing World. Springer (to appear, 2014)

6. de Freitas, F.G., de Souza, J.T.: Ten years of search based software engineering: A
bibliometric analysis. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS,
vol. 6956, pp. 18–32. Springer, Heidelberg (2011)

7. Ghannem, A., El Boussaidi, G., Kessentini, M.: Model refactoring using interactive
genetic algorithm. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084,
pp. 96–110. Springer, Heidelberg (2013)

8. Harman, M.: How SBSE can support construction and analysis of predictive models
(keynote paper). In: 6th PROMISE (2010)

9. Harman, M.: Search based software engineering (keynote paper). In: 13th FASE
(2010)

XXVI M. Harman

10. Harman, M., Burke, E., Clark, J.A., Yao, X.: Dynamic adaptive search based
software engineering (keynote paper). In: 6th ESEM, pp. 1–8 (2012)

11. Harman, M., Clark, J.: Dynamic adaptive search based software engineering needs
fast approximate metrics (keynote paper). In: 4th WeTSOM (2013)

12. Harman, M., Jia, Y., Krinke, J., Langdon, B., Petke, J., Zhang, Y.: Search based
software engineering for software product line engineering: A survey and directions
for future work (keynote paper). In: 15th SPLC (2014)

13. Harman, M., Jia, Y., Langdon, W.B., Petke, J., Moghadam, I.H., Yoo, S., Wu, F.:
Genetic improvement for adaptive software engineering (keynote paper). In: 9th
SEAMS, pp. 1–4 (2014)

14. Harman, M., Jones, B.F.: Search based software engineering. Information and Soft-
ware Technology 43(14), 833–839 (2001)

15. Harman, M., Lakhotia, K., Singer, J., White, D., Yoo, S.: Cloud engineering is
search based software engineering too. Journal of Systems and Software 86(9),
2225–2241 (2013)

16. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The
GISMOE challenge: Constructing the pareto program surface using genetic pro-
gramming to find better programs (keynote paper). In: 27th ASE, pp. 1–14 (2012)

17. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse engi-
neering (keynote paper). In: 20th WCRE (2013)

18. Harman, M., Mansouri, A., Zhang, Y.: Search based software engineering: Trends,
techniques and applications. ACM Computing Surveys 45(1), 11:1–11:61 (2012)

19. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Transactions on Evolutionary Computation (to appear, 2014)

20. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software
repair. Software Quality Journal 21(3), 421–443 (2013)

21. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: A generic method
for automatic software repair. IEEE Transactions on Software Engineering 38(1),
54–72 (2012)

22. McMinn, P.: Search-based software testing: Past, present and future (keynote pa-
per). In: SBST, pp. 153–163 (2011)

23. Cinnéde, Ó., Tratt, M., Harman, L., Counsell, M., Moghadam, S.,, I.H.: Experi-
mental assessment of software metrics using automated refactoring. In: 6th ESEM,
pp. 49–58 (2012)

24. Orlov, M., Sipper, M.: Flight of the FINCH through the java wilderness. IEEE
Transactions Evolutionary Computation 15(2), 166–182 (2011)

25. Di Penta, M.: SBSE meets software maintenance: Achievements and open prob-
lems. In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515,
pp. 27–28. Springer, Heidelberg (2012)

26. Petke, J., Cohen, M.B., Harman, M., Yoo, S.: Efficiency and early fault detection
with lower and higher strength combinatorial interaction testing. In: ESEC/FSE,
pp. 26–36 (2013)

27. Räihä, O.: A survey on search–based software design. Computer Science Re-
view 4(4), 203–249 (2010)

28. Swan, J., Epitropakis, M.G., Woodward, J.R.: Gen-o-fix: An embeddable frame-
work for dynamic adaptive genetic improvement programming. Tech. Rep. CSM-
195, Computing Science and Mathematics, University of Stirling (2014)

29. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE
Transactions on Evolutionary Computation 15(4), 515–538 (2011)

SBSE: Introduction, Motivation, Results and Directions XXVII

30. Zhang, Y.-Y., Finkelstein, A., Harman, M.: Search based requirements optimisa-
tion: Existing work and challenges. In: Paech, B., Rolland, C. (eds.) REFSQ 2008.
LNCS, vol. 5025, pp. 88–94. Springer, Heidelberg (2008)

Table of Contents

Full Research Papers

On the Effectiveness of Whole Test Suite Generation 1
Andrea Arcuri and Gordon Fraser

Detecting Program Execution Phases Using Heuristic Search 16
Omar Benomar, Houari Sahraoui, and Pierre Poulin

On the Use of Machine Learning and Search-Based Software
Engineering for Ill-Defined Fitness Function: A Case Study on Software
Refactoring . 31

Boukhdhir Amal, Marouane Kessentini, Slim Bechikh,
Josselin Dea, and Lamjed Ben Said

Producing Just Enough Documentation: The Next SAD Version
Problem . 46

J. Andres Diaz-Pace, Matias Nicoletti, Silvia Schiaffino, and
Santiago Vidal

A Multi-model Optimization Framework for the Model Driven Design
of Cloud Applications . 61

Danilo Ardagna, Giovanni Paolo Gibilisco, Michele Ciavotta, and
Alexander Lavrentev

A Pattern-Driven Mutation Operator for Search-Based Product Line
Architecture Design . 77

Giovani Guizzo, Thelma Elita Colanzi, and Silvia Regina Vergilio

Mutation-Based Generation of Software Product Line Test
Configurations . 92

Christopher Henard, Mike Papadakis, and Yves Le Traon

Multi-objective Genetic Optimization for Noise-Based Testing of
Concurrent Software . 107

Vendula Hrubá, Bohuslav Křena, Zdeněk Letko,
Hana Pluháčková, and Tomáš Vojnar

Bi-objective Genetic Search for Release Planning in Support
of Themes . 123

Muhammad Rezaul Karim and Guenther Ruhe

Combining Stochastic Grammars and Genetic Programming for
Coverage Testing at the System Level . 138

Fitsum Meshesha Kifetew, Roberto Tiella, and Paolo Tonella

XXX Table of Contents

Feature Model Synthesis with Genetic Programming 153
Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and
Alexander Egyed

A Robust Multi-objective Approach for Software Refactoring under
Uncertainty . 168

Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, and
Mel Ó Cinnéide

Towards Automated A/B Testing . 184
Giordano Tamburrelli and Alessandro Margara

Random-Weighted Search-Based Multi-objective Optimization
Revisited . 199

Shuai Wang, Shaukat Ali, and Arnaud Gotlieb

Short Papers

A New Learning Mechanism for Resolving Inconsistencies in Using
Cooperative Co-evolution Model . 215

Yongrui Xu and Peng Liang

Graduate Student Track Papers

Improving Heuristics for the Next Release Problem through Landscape
Visualization . 222

Richard Fuchshuber and Márcio de Oliveira Barros

Machine Learning for User Modeling in an Interactive Genetic
Algorithm for the Next Release Problem . 228

Allysson Allex Araújo and Matheus Paixão

Transaction Profile Estimation of Queueing Network Models for IT
Systems Using a Search-Based Technique . 234

Shadi Ghaith, Miao Wang, Philip Perry, and John Murphy

SBSE Challenge Track Papers

Less is More: Temporal Fault Predictive Performance over Multiple
Hadoop Releases . 240

Mark Harman, Syed Islam, Yue Jia, Leandro L. Minku,
Federica Sarro, and Komsan Srivisut

Babel Pidgin: SBSE Can Grow and Graft Entirely New Functionality
into a Real World System . 247

Mark Harman, Yue Jia, and William B. Langdon

Table of Contents XXXI

Pidgin Crasher : Searching for Minimised Crashing GUI Event
Sequences . 253

Haitao Dan, Mark Harman, Jens Krinke, Lingbo Li,
Alexandru Marginean, and Fan Wu

Repairing and Optimizing Hadoop hashCode Implementations 259
Zoltan A. Kocsis, Geoff Neumann, Jerry Swan,
Michael G. Epitropakis, Alexander E.I. Brownlee,
Sami O. Haraldsson, and Edward Bowles

Author Index . 265

Erratum

Repairing and Optimizing Hadoop hashCode Implementations
Zoltan A. Kocsis, Geoff Neumann, Jerry Swan,
Michael G. Epitropakis, Alexander E.I. Brownlee,
Sami O. Haraldsson, and Edward Bowles

E1

