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Preface

Message from the SSBSE 2014 General Chair

SBSE is growing up! In its sixth edition, the conference left home and expanded
its reach in a process of becoming a truly global forum. Brazil was proudly chosen
to kick off this process, mainly in recognition of its strong and still growing
SBSE community. Besides innovating in its location, SSBSE 2014 implemented
a series of novelties. First, it stood alone once again. As a test of maturity, this
decision sheds light on how independent and solid the SBSE field has become.
Second, it brought an all-inclusive experience, allowing for a much higher level
of integration among participants, in turn strengthening the community and
helping create a much more cooperative environment. Finally, it implemented a
double-blind submission and review process for the first time, providing as fair
and objective an evaluation of the submitted papers as possible.

Obviously, this historical event would not have been possible without the
help of many people, who I would like to recognize and thank. First of all, I
would like to thank our program chairs, Shin Yoo (University College London,
UK) and Claire Le Goues (Carnegie Mellon University, USA). They led the
review process with great competence and dedication and put together a very
rich and high-quality scientific program. I extend this recognition to all members
of our Program Committee, for the dedicated work in the review and selection of
our papers. Next, I thank our Graduate Student Track chair, Nadia Alshahwan
(University College London, UK), and our SBSE Challenge Track chair (Márcio
de Oliveira Barros, Federal University of the State of Rio de Janeiro, Brazil), for
their hard work on organizing those two special tracks. I would also like to give
special thanks to my friend Allysson Araújo (State University of Ceará, Brazil),
our Web chair, for accepting the important challenge of creating and maintaining
our website and operating this task with perfection. Also, I thank our publicity
chair, Sina Shamshiri (University of Sheffield, UK), for the important job of
keeping everybody informed about our event. Finally, I also thank the SSBSE
Steering Committee, chaired by Mark Harman (University College London, UK),
for their vote of confidence in giving us the privilege of organizing SSBSE 2014.

I must also mention and thank our long list of sponsors, who believed in our
proposal and provided confidence in me and in the field of SBSE. Without their
support, SSBSE 2014 would not have been nearly so special.

I hope you enjoy reading these proceedings as much as I enjoyed organizing
the event.

August 2014 Jerffeson Teixeira de Souza
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Message from the SSBSE 2014 Program Chairs

On behalf of the SSBSE 2014 Program Committee, we are pleased to present
the proceedings of the 6th International Symposium on Search-Based Software
Engineering. This year brought SSBSE to South America for the first time, in the
oceanside paradise of Fortaleza, Brazil! SSBSE 2014 continued to bring together
the international community of SSBSE researchers to exchange and discuss ideas
and celebrate the latest progress in this rapidly advancing field.

We are delighted to report that we had a record-breaking 51 submissions to
our four tracks: 32 Full Research Track submissions, eight Graduate Student
Track submissions, three Fast Abstract submissions, and eight SBSE Challenge
Track submissions. Submissions came from 19 different countries: Argentina,
Austria, Brazil, Canada, China, the Czech Republic, France, Germany, India,
Ireland, Italy, Luxembourg, Norway, the Russian Federation, Sweden, Switzer-
land, Tunisia, the UK, and the USA. After each submission was reviewed by at
least three members of the Program Committee, we accepted 14 Full Research
Track papers, one Fast Abstract track paper, three Graduate Student Track
papers, and four SBSE Challenge Track papers.

We would like to thank the members of the SSBSE 2014 Program Commit-
tee. Without their continued support, we would not have been able to further
improve the quality of the submissions and maintain the symposium’s tradi-
tion of a high-quality technical program. The general chair, Jerffeson Teixeira
de Souza, deserves a special mention for leading an excellent team, especially
locally, to make the conference an unforgettable experience for everyone. In ad-
dition, Márcio Barros worked hard to manage the fast-growing SBSE Challenge
Track, while Nadia Alshahwan oversaw the process of handling the Graduate
Student Track. The technical program would not have been the same without
their effort, for which we especially want to thank them.

As an experiment, this year we implemented a double-blind review procedure
for the main research track of the SSBSE program. Our intention was to enable
as fair a review process as possible, and recent evidence suggests that removing
information like institutional affiliation, country of origin, and author name from
submissions under review can contribute to this goal. We want to thank both
the Program Committee and our submitting authors for their patience with a
new and largely unfamiliar system, and for allowing us to experiment with our
review procedure. We encourage those who participated to continue sharing their
perspectives on this and other issues related to review and feedback quality.
Peer review remains a collaborative and work-in-progress system, and we are
interested in the community’s experience to help inform future decisions for
both this conference and others like it.

The symposium has an excellent tradition of hearing and learning from world
experts in both software engineering and meta-heuristic optimization, and we are
glad to report that this year was not an exception. We had the honor of having a
keynote from Prof. Mauro Pezzè, whose research on software redundancy bears
a strong connection to SBSE. Furthermore, we also had a keynote from Dr.
Marc Schoenauer, who brought us up to date with progress in adaptive learning
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research. Finally, the Brazilian SBSE community warmly and enthusiastically
invited Prof. Mark Harman to present a review of the field.

We would like to thank all the authors who submitted papers to SSBSE
2014, regardless of the outcome, and everyone who attended the symposium.
We hope that, with these proceedings, anyone who did not have a chance to be
at Fortaleza will have the opportunity to experience the exuberance of the SBSE
community.

August 2014 Claire Le Goues
Shin Yoo
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Intrinsic Software Redundancy:

Applications and Challenges
(Extended Abstract)

Mauro Pezzè

University of Lugano, Switzerland and University of Milano Bicocca, Italy

mauro.pezze@usi.ch

Abstract. Search-based software engineering has many important ap-
plications. Here, we identify a novel use of search-based techniques to
identify redundant components. Modern software systems are intrinsi-
cally redundant, and such redundancy finds many applications. In this
paper we introduce the concept of intrinsic redundancy, and we present
some important applications to develop self-healing systems and auto-
matically generate semantically relevant oracles. We then illustrate how
search-based software engineering can be used to automatically identify
redundant methods in software systems, thus paving the road to an ef-
ficient exploitation of intrinsic redundancy, and opening new research
frontiers for search-based software engineering.

Reliability is becoming a necessity for many software systems and redundancy
is its cornerstone. Well defined processes, efficient design approaches, careful
coding and pervasive testing and analysis can build excellent software products,
but cannot completely eliminate failures in the field, and the software products
may not meet a sufficient reliability level.

The classic way of improving the reliability of systems of different kinds ex-
ploits some form of redundancy. RAID disks (Redundant Array of Independent
Disks) are a successful example of the use of redundancy for improving hard-
ware reliability [1], the HDFS (Hadoop Distributed File System) is a popular
example of the use of redundancy for improving data reliability [2], N-version
programming is a classic approach that exploits redundancy for improving soft-
ware reliability [3].

In these different approaches, redundancy is deliberately added to the system
to improve reliability, and comes with additional costs that depend on the goals.
In hardware systems, redundancy aims to reduce the impact of production de-
fects, and is added at the production level, thus impacts mostly on production
costs. In database systems, redundancy is added at the server level and impacts
mostly on infrastructure costs. N-version programming targets design errors and
is added at the design level, where the impact on costs is relevant.

We point to a different kind of software redundancy that is intrinsically
present in software systems, and is thus available without additional design or
production costs. Our empirical investigation indicates that such form of re-
dundancy is widely spread in modern software systems and is a consequence
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of good design practice. Our work shows that this form of redundancy can be
automatically synthetized by means of search-based techniques [4], and can be
successfully exploited in many ways, including the automatic generation of self-
healing mechanisms [5] and of semantic oracles [6].

Redundancy is present at many abstraction levels, here we discuss it refer-
ring to redundancy at method call level. We say that two methods are redundant
when their execution is both different and produces equivalent results. Results
are equivalent when both the output and the final state are indistinguishable
from an external observer viewpoint, as formalised with the concept of obser-
vational equivalence [7]. Executions are different when they involve different
statements or the same statements but in different order.

Redundancy is intrinsically present in software systems due to modern design
practice. Design for reusability often leads to the same functionality implemented
in different methods to improve compatibility with different uses, as it happened
in containers that provide different methods to add one or more elements to the
container. Performance optimisation frequently results in different methods im-
plementing the same functionality, albeit with different, optimised code, like the
trove4J library that duplicates many of the functionalities offered by the stan-
dard Java containers. Backward compatibility is obtained by keeping the old
versions of the reimplemented functionalities thus offering redundant methods.
Redundancy is massively present in modern software systems: Our manual in-
spection of several popular libraries including Apache Ant, Google Guava, Joda
Time, Eclipse SWT, graphstream and Lucene identified over 4,700 redundant
methods, with an average of 5 redundant methods per class.

Intrinsic redundancy can be exploited to build self-healing mechanisms. Once
identified a set of redundant methods, we can automatically deploy a mechanism
that substitutes a failing method with a redundant one to avoid the failure. We
call such approach automatic workaround. The design of automatic workarounds
requires a mechanism to reveal failures, we rely on assertions embedded in the
code, a method to roll back to a correct state, we rely on an optimised rollback
mechanism, and a method to execute a redundant method, we rely on a source
to source code transformation [8, 5].

Another interesting application of intrinsic redundancy is the automatic syn-
thesis of semantically relevant test oracles. The increasing availability of au-
tomated test cases exacerbates the need of automated oracles, and the cost
pressure of software development calls for automatically generated oracles. Or-
acles that can be easily generated automatically, such as implicit oracles, can
only reveal simple failures, like unhandled exceptions, while oracles derived from
formal specifications can reveal failures that depend on the program semantics,
but require formal specifications that are expensive to produce. We exploit the
intrinsic redundancy of software systems to automatically generate test oracles
that can reveal failures related to the program semantics by cloning the program
state before executing a method call, executing the original call on the original
state and the corresponding redundant call on the cloned state, and comparing
the results. In this way we can reveal discrepancies between the executions of
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methods that should produce equivalent results and reveal failures related to the
program semantics. We call such oracles cross-checking oracles [6].

The automatic synthesis of both self-healing mechanisms and automated or-
acles requires a set of redundant program elements as input. We can automati-
cally synthetize redundant methods without expensive formal specifications by
exploiting search-based techniques. We use a genetic algorithm for synthetizing
a method call equivalent to a given method for an initial scenario (usually one
or few test cases). We then look for a counterexample that, if found, gives us
a new scenario to search for a redundant method, and, if not found, confirms
the redundancy of the original and the identified method. We can automatically
synthetize a large amount of redundant methods by applying the approach to
all methods in the target software system.

Acknowledgement. We would like to acknowledge the Swiss National
Foundation (SNF) for supporting this work through the projects Perseos (SNF
200021 116287), Wash (SNF 200020 124918) and Shade (SNF 200021 138006),
and the many people who contributed to the work, Antonio Carzaniga, Alberto
Goffi, Alessandra Gorla, Andrea Mattavelli, Nicolò Perino and Paolo Tonella.
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As early as 1904, Spearman [19] proposed to use ranks rather than actual values
to unveil correlations between data of unknown distribution. This was the begin-
ning of rank statistics and non-parametric tests. Still, in practice non-parametric
statistics are generally less accurate than their parametric counterparts (even
though more widely applicable), and the latter are often used even though the
underlying hypotheses (normally distributed data, size of sample) are not satis-
fied.

In the context of optimization and programming however, rank-based ap-
proaches might prove more beneficial that value-based approaches even in cases
where both approaches apply. Three test cases related to Algorithm Engineering
will be surveyed here, dealing with Black-Box Optimization (Section 1), Algo-
rithm Selection using ideas from recommender systems (Section 2) and robot
programming by weak experts (Section 3).

1 Rank-SVM Surrogate Models for CMA-ES

In the general framework of (black-box) continuous optimization, the human
mind cannot always easily grasp quantified measures to assess the quality of a
potential solution. In a famous example of interactive optimization [8], when the
coffee maker asks some coffee experts how close the taste of a coffee is from a
targeted coffee taste, there does not even exist a scale that could be used by all
experts to put a number on taste proximity. However, every expert can assess
whether a coffee is closer or farther than another one with respect to the target
taste.

Quantifying differences might be a problem even when there is no human
being in the loop. More generally, the optimization of a given real-valued func-
tion F is unchanged if F undergoes any monotonous transformation (from pre-
conditioning to non-linear regularization), although this can have a huge impact
on the efficiency of most optimization algorithms. Comparison-based algorithms
de facto possess such invariance w.r.t. monotonous transformations. In the case
of expensive optimization problems, the usual strategy is to learn an approxima-
tion a.k.a. surrogate model of F by numerical regression; this strategy however
destroys the invariance property as the surrogate model depends on the values
of F . Ordinal regression, aka rank-based learning, instead defines a surrogate
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model which only preserves the ranks of the F values [10]. The use of such
rank-based surrogates preserves the invariance property in comparison-based
optimization [17]. Interestingly, the Covariance Matrix Adaptation Evolution
Strategy [7] (CMA-ES, considered today the state-of-the-art method in Black-
Box optimization) can be tightly integrated with rank-based learning, thus pre-
serving all invariance properties of CMA-ES [14], while enforcing the control
and adaptation of the learning hyper-parameters [15]. The resulting surrogate-
augmented algorithm further improves the performance of the basic variants of
CMA-ES on the BBOB (Black-Box Optimization Benchmarking [5]) platform.

2 Algorithm Selection as a Collaborative Filtering

In the domain of recommendation algorithms, similarly, movie rating can vary
a lot from user to user, clearly raising a scaling issue in recommendation sys-
tems [4]. On the opposite, any user is able to rank the movies he has seen. The
CofiRank method [21] uses the Maximal Margin Matrix Factorization to approxi-
mate rankings rather than ratings, bringing more robustness in the recommender
system.

Similar issues arise in algorithm selection, a key issue to get peak performance
from algorithm portfolios. It turns out that algorithm selection can be formalized
as a collaborative filtering problem [20], by considering that a problem instance
“prefers” the algorithms with better performance on this particular instance.
Learning the rating, i.e. the actual performance of the algorithm on the problem
instance raises significant difficulties, as the performance of an algorithm can
vary by orders of magnitude depending on the problem instance. Learning how
to rank algorithms depending on the problem instance can instead be achieved
efficiently [16].

A main difficulty in algorithm selection is the handling of the so-called ‘cold
start’ problem: how to choose an algorithm for a brand-new instance? Former
algorithm selection methods relied on known features describing the problem in-
stances − however with mixed results [12]. But the Matrix Factorization method
amounts to identify latent features that are by construction well suited to the
algorithm selection problem. Supervised learning of a mapping between known
features and those latent features is the key to solving the cold-start problem,
as demonstrated in [16] on three problem domains (the 2008 CSP and 2011 SAT
competitions, and the BBOB platform).

3 Programming by Feedback

In the context of adapting software or hardware agents (e.g., a companion robot)
to the precise requirements or preferences of their human users, the limitation
comes from both the quantity and the quality of what can be asked to the user.
Whereas you can ask experts to demonstrate the desired behavior to the robot,
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as in Inverse Reinforcement Learning approaches [1, 11], you can only ask limited
amount of feedback to the average user. On the one hand, the feedback is uneasily
provided through numbers; on the other hand, even a preference feedback (it is
better, it is worse) can be noisy and inconsistent.

Preference-based reinforcement learning, hybridizing reinforcement learning
and learning to rank, has been proposed to handle domains with no numerical
rewards [6], allowing the user to compare and rank the agent behaviors [22,
2]. The key issues are to deliver a good performance with a limited number of
comparison queries, and particularly to stand the comparison errors and the
possible user inconsistencies. These issues have been addressed in [3], enabling
the agent to model the user’s competence; indeed the cooperation between two
intelligent partners is better supported by each partner having a model of the
other one (see e.g. [13]).

From the user point of view, the game is similar to the well-known children’s
game “Hot-and-Cold”: she only has to tell the robot whether each new demon-
strated behavior is better or worse than the previous one − and she can be
inconsistent (or her goal can evolve). From the robot perspective, the idea is to
gradually learn the user’s utility function in the demonstration space, accounting
for the user’s estimated competence, and, based on the current utility function,
to optimize in the solution space the behavior with respect to some maximal
posterior utility, demonstrating the best one to the user. Experimental results
on artificial RL benchmark problems favorably compare to the state of the art
[22], and proof-of-principle results are obtained on a real NAO robot, though on
elementary tasks: 5 (resp. 24) interactions with the user are required to solve
problems involving 13 (resp. 20) states spaces.

4 Conclusion

There is emerging evidence that the art of programming could be revisited in the
light of the current state of the art in Machine Learning and Optimization. While
the notion of formal specifications has been at the core of software sciences for
over three decades, the relevance of ML-based approaches has been demonstrated
in the domain of pattern recognition since the early 90s.

Along this line, a new trend dubbed Programming by Optimization advocates
algorithm portfolios endowed with a control layer such that determining what
works best in a given use context [could be] performed automatically, substituting
human labor by computation [9]. Similarly, it has been suggested that the state
of the art can be improved by configuring existing techniques better rather than
inventing new learning paradigms [18].

Going further, we propose the Programming by Ranking paradigm, extend-
ing the above Programming by Feedback; several proofs of principle thereof in
different domains have been described, related to expensive optimization, al-
gorithm selection and policy design. Ultimately, our claim is that learning-
to-rank Machine Learning algorithms, based on minimal and possibly noisy



Programming by Ranking XXI

specification/information/feedback from the user, have today reached the come-
of-age and should be considered whenever optimization at large is at stake.
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SBSE: Introduction, Motivation,

Results and Directions

Mark Harman

University College London, CREST Centre, UK

Abstract. This talk at SSBSE 2014 will provide an introduction to
SBSE [4, 6, 14, 18], drawing on results from recent work and the many
surveys of SBSE for requirements [30], predictive modelling [1, 8] software
project management [5], cloud engineering [15], design [27], maintenance
[25], testing [2, 22], refactoring [7, 23] and repair [20]. The talk will be
partly interactive, discussing the motivation for computational search
in software engineering. We will also explore why it is that, among all
engineering disciplines, it is software engineering for which computa-
tional search finds its most compelling and promising application [9].
This theme will be developed by considering recent work that optimises
the engineering material at the heart of all software systems: the source
code itself. We will focus, in particular, on recent developments in Dy-
namic Adaptive SBSE [10, 11, 13] and genetic improvement for repair [21,
20], non-functional enhancement [3, 16, 19, 24, 28, 29], source code trans-
plantation [17, 26] and Software Product Line optimisation [12].

References

1. Abbeel, P.: Apprenticeship Learning and Reinforcement Learning with Application
to Robotic Control. PhD thesis, Stanford University (2008)

2. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing
for non-functional system properties. Information and Software Technology 51(6),
957–976 (2009)

3. Arcuri, A., White, D.R., Clark, J.A., Yao, X.: Multi-objective improvement of
software using co-evolution and smart seeding. In: 7th SEAL, pp. 61–70 (2008)

4. Colanzi, T.E., Vergilio, S.R., Assuncao, W.K.G., Pozo, A.: Search based software
engineering: Review and analysis of the field in Brazil. Journal of Systems and
Software 86(4), 970–984 (2013)

5. Ferrucci, F., Harman, M., Sarro, F.: Search based software project management.
In: Software Project Management in a Changing World. Springer (to appear, 2014)

6. de Freitas, F.G., de Souza, J.T.: Ten years of search based software engineering: A
bibliometric analysis. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS,
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