Skip to main content

Evolutionary Swarm Robotics: Genetic Diversity, Task-Allocation and Task-Switching

  • Conference paper
Swarm Intelligence (ANTS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8667))

Included in the following conference series:

Abstract

The goal of this study is to investigate the role of genetic diversity for engineering more resilient evolutionary swarm robotic systems. The resilience of the swarm is evaluated with respect to the capability of the system to re-distribute agents to tasks in response to changes in operating conditions. We compare the performances of two evolutionary approaches: the clonal approach in which the teams are genetically homogeneous, and the aclonal approach in which the teams are genetically heterogeneous. We show that the aclonal approach outperforms the clonal approach for the design of robot teams engaged in two task-allocation scenarios, and that heterogeneous teams tend to rely on less plastic strategies. The significance of this study for evolutionary swarm robotics is discussed and directions for future work are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ampatzis, C., Tuci, E., Trianni, V., Christensen, A., Dorigo, M.: Evolving self-assembly in autonomous homogeneous robots. Artificial Life 15(4), 465–484 (2009)

    Article  Google Scholar 

  2. Beer, R.D., Gallagher, J.C.: Evolving dynamic neural networks for adaptive behavior. Adaptive Behavior 1(1), 91–122 (1992)

    Article  Google Scholar 

  3. Bonabeau, E., Theraulaz, G., Deneubourg, J.L.: Quantitative study of the fixed threshold model for the regulation of division of labour in insects societies. Pro. R. Soc. B 263(1376), 1565–1569 (1996)

    Article  Google Scholar 

  4. Dorigo, M., Şahin, E.: Guest editorial. Special issue: Swarm robotics. Aut. Rob. 17(2-3), 111–113 (2004)

    Google Scholar 

  5. Duarte, A., Weissing, F., Penn, I., Keller, L.: An evolutionary perspective on self-organised division of labour in social insects. Annu. Rev. Ecol. Evol. Syst. 42, 91–110 (2011)

    Article  Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  7. Gordon, D.: Dynamics of task-switching in harvester ants. Animal Behaviour 38, 194–204 (1989)

    Article  Google Scholar 

  8. Gordon, D.: The organisation of work in social insects. Nature 380, 121–124 (1996)

    Article  Google Scholar 

  9. Jakobi, N.: Evolutionary robotics and the radical envelope of noise hypothesis. Adaptive Behavior 6, 325–368 (1997)

    Article  Google Scholar 

  10. Labella, T., Dorigo, M., Deneubourg, J.L.: Division of labour in a group of robots inspired by ants’ foraging behavior. ACM Trans. Aut. Adap. Sys. 1(1), 4–25 (2006)

    Article  Google Scholar 

  11. Nolfi, S., Gigliotta, O.: Evorobot ⋆ . In: Nolfi, S., Mirolli, M. (eds.) Evolution of Communication and Language in Embodied Agents, pp. 327–332. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Oldroyd, B., Fewell, J.: Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. E 22(8), 408–413 (2007)

    Article  Google Scholar 

  13. Page, R.: The evolution of insects societies. Endeavour 21(7), 114–120 (1997)

    Article  Google Scholar 

  14. Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., Birattari, M.: Task partitioning in swarms of robots: An adaptive method for strategy selection. Swarm Intelligence 5(3-4), 283–304 (2011)

    Article  Google Scholar 

  15. Quinn, M.: A comparison of approaches to the evolution of homogeneous multi-robot teams. In: Proc. Int. Conf. Evolutionary Computation (CEC), vol. 1, pp. 128–135 (2001)

    Google Scholar 

  16. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homogeneous system of physical robots: Structured cooperation with minimal sensors. Phil. Trans. R. Soc. A 361, 2321–2344 (2003)

    Article  MathSciNet  Google Scholar 

  17. Trianni, V., Nolfi, S.: Engineering the evolution of self-organizing behaviors in swarm robotics: A case study. Artificial Life 17(3), 183–202 (2011)

    Article  Google Scholar 

  18. Tuci, E., Ampatzis, C., Vicentini, F., Dorigo, M.: Evolving homogeneous neuro-controllers for a group of heterogeneous robots. Artificial Life 14(2) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tuci, E. (2014). Evolutionary Swarm Robotics: Genetic Diversity, Task-Allocation and Task-Switching. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2014. Lecture Notes in Computer Science, vol 8667. Springer, Cham. https://doi.org/10.1007/978-3-319-09952-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09952-1_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09951-4

  • Online ISBN: 978-3-319-09952-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics