Skip to main content

Knapsack Intersection Graphs and Efficient Computation of Their Maximal Cliques

  • Conference paper
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8641))

  • 1380 Accesses

Abstract

As an image can easily be modeled by its adjacency graph, graph theory and algorithms on graphs are widely used in imaging sciences. In this paper we define a knapsack graph, which is an intersection graph of integer translates of knapsack polygons, and consider the maximal clique problem on such graphs. A major application of intersection graphs is found in visualization of relations among objects in a scene. Efficient algorithms for the maximal clique problem are applicable to problems of computer graphics and image analysis, while properties of the knapsack polygon have been used in obtaining theoretical results in discrete geometry for computer imagery. We first show that the maximal clique problem on knapsack graphs is equivalent to the maximal clique problem on intersection graphs of homothetic right triangles. The latter was shown to be equivalent to the maximal clique problem on max-tolerance graphs and solvable in optimal O(n 3) time [28]. Thus, if the linear constraints defining the knapsack polygons are known, then the maximal clique problem on knapsack graphs can be solved using the algorithm from [28]. If the polygons are given by lists of their vertices and the defining constraints are unknown, we show how these can be found efficiently in computation time bounded by a low degree polynomial in the polygons size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, W., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990), http://www.ncbi.nlm.nih.gov/BLAST/

    Article  Google Scholar 

  2. Ambühl, C., Wagner, U.: The clique problem in intersection graphs of ellipses and triangles. Theory Comput. Syst. 38, 279–292 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ballard, D.H., Brown, M.: Computer Vision. Prentice-Hall, Englewood Cliffs, N.J (1982)

    Google Scholar 

  4. Brimkov, V.E.: Vertices of the Knapsack Polytope. MS Thesis, University of Sofia (1984)

    Google Scholar 

  5. Brimkov, V.E.: A quasi-polynomial algorithm for the knapsack problem. Yugoslav J. Operations Research 4, 149–157 (1994)

    MATH  MathSciNet  Google Scholar 

  6. Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points in a hyperball. Theoretical Computer Science 406, 24–30 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brimkov, V.E., Kafer, S., Szczepankiewicz, M., Terhaar, J.: Maximal cliques in intersection graphs of quasi-homothetic trapezoids. In: Proc. MCURCSM 2013, Ohio, p. 10 (2013)

    Google Scholar 

  8. Brimkov, V.E., Kafer, S., Szczepankiewicz, M., Terhaar, J.: On intersection graphs of convex polygons. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 25–36. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  9. Cabello, S., Cardinal, J., Langerman, S.: The clique problem in ray intersection graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 241–252. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Coeurjolly, D., Brimkov, V.E.: Computational aspects of digital plane and hyperplane recognition. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 291–306. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Čulík, K.: Applications of graph theory to mathematical logic and linguistics. In: Proc. Sympos. “Theory of Graphs and its Applications”, Smolenice, 1963, pp. 13–20. Publ. House Czechoslovak Acad. Sci., Prague (1964)

    Google Scholar 

  12. de Vieilleville, F., Lachaud, J.-O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 988–997. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Eisenbrand, F., Laue, S.: A faster algorithm for two-variable integer programming. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 290–299. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Erdős, P., Goodman, A.W., Pósa, L.: The representation of a graph by set intersections. Canad. J. Math. 18, 106–112 (1966)

    Article  MathSciNet  Google Scholar 

  15. Evako, A.V.: Topological properties of the intersection graph of covers of n-dimensional surfaces. Discrete Mathematics 147, 107–120 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Felsner, S., Müller, R., Wernisch, L.: Trapezoid graphs and generalizations, geometry and algorithms. Discrete Applied Mathematics 74, 13–32 (1993)

    Article  Google Scholar 

  17. Fish, A., Stapleton, G.: Formal issues in languages based on closed curves. In: Proc. Distributed Multimedia Systems, pp. 161–167 (2006)

    Google Scholar 

  18. Gardiner, E.J.: Artymiuk, P.J., Willett, P.: Clique-detection algorithms for matching three-dimensional molecular structures. J. Molecular Graph Modelling 15(4), 245–253 (1997)

    Article  Google Scholar 

  19. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Acad. Press (1980)

    Google Scholar 

  20. Golumbic, M., Trenk, A.: Tolerance graphs. Cambridge Studies in Advanced Mathematics, vol. 89. Cambidge University Press (2005)

    Google Scholar 

  21. Heinzle, F., Ander, K.H., Sester, M.: Graph based approaches for recognition of patterns and implicit information in road networks. In: Proc. 22nd International Cartographic Conference, A Coruna (2005)

    Google Scholar 

  22. Haies, A.C., Larman, D.S.: The vertices of the knapsack polytope. Discr. Appl. Math. 6, 135–138 (1983)

    Article  Google Scholar 

  23. Imai, H., Asano, T.: Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. Journal of Algorithms 4, 300–323 (1983)

    Article  MathSciNet  Google Scholar 

  24. Ion, A., Carreira, J., Sminchisescu, C.: Image segmentation by figure-ground composition into maximal cliques. In: Proc. 13th International Conference on Computer Vision, Barcelona, pp. 2110–2117 (2011)

    Google Scholar 

  25. Jacobson, M.S., Morris, F.R., Scheinermann, E.R.: General results on tolerance intersection graphs. J. Graph Theory 15, 573–577 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Junosza-Szaniawski, K., Kratochvíl, J., Pergel, M., Rzążewski, P.: Beyond Homothetic Polygons: Recognition and Maximum Clique. In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 619–628. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Klette, R., Rosenfeld, A.: Digital Geometry. Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  28. Kaufmann, M., Kratochvíl, J., Lehmann, K., Subramanian, A.: Max-tolerance graphs as intersection graphs: cliques, cycles, and recognition. In: Proc. SODA 2006, pp. 832–841 (2006)

    Google Scholar 

  29. Kratochvíl, J.: Kuběna, A.: On intersection representations of co-planar graphs. Discrete Mathematics 178, 251–255 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kratochvíl, J., Nešetřil, J.: Independent set and clique problems in intersection-defined classes of graphs. Comm. Math. Uni. Car. 31, 85–93 (1990)

    MATH  Google Scholar 

  31. Kratochvíl, J., Pergel, M.: Intersection graphs of homothetic polygons. Electronic Notes in Discr. Math. 31, 277–280 (2008)

    Article  Google Scholar 

  32. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. In: SIAM Monographs on Discrete Mathematics and Applications 2. SIAM, Philadelphia (1999)

    Google Scholar 

  33. Nakamura, H., Higashi, M., Hosaka, M.: Robust computation of intersection graph between two solids. Computer Graphics Forum 16, C79–C88 (1997)

    Google Scholar 

  34. Nakamura, H., Masatake, H., Mamoru, H.: Robust computation of intersection graph between two solids. Graphical Models 16(3), C79–C88 (1997)

    Google Scholar 

  35. Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and minimum object enclosing rectangles and cuboids. Computers Math. Applic. 29(8), 45–61 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Paget, R., Longsta, D.: Extracting the cliques from a neighbourhood System. IEE Proc. Vision Image and Signal Processing 144(3), 168–170 (1997)

    Article  Google Scholar 

  37. Rubin, D.S.: On the unlimited number of faces in integer hulls of linear programs with a single constraint. Operations Research 18, 940–946 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  38. Simonetto, P., Auber, D.: An heuristic for the construction of intersection graphs. In: 13th International Conference on Information Visualisation, pp. 673–678 (2009)

    Google Scholar 

  39. Simonetto, P., Auber, D.: Visualise undrawable Euler diagrams. In: Proc. 12th IEEE International Conference on Information Visualisation, pp. 594–599 (2008)

    Google Scholar 

  40. Szpilrajn-Marczewski, E.: Sur deux proprisétés des classes d’ensembles. Fund. Math. 33, 303–307 (1945)

    MATH  MathSciNet  Google Scholar 

  41. Tian, J., Tinghua, A., Xiaobin, J.: Graph based recognition of grid pattern in street networks. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Advances in Spatial Data Handling and GIS. Lecture Notes in Geoinformation and Cartography, vol. 38, Part II, pp. 129–143 (2012)

    Google Scholar 

  42. Vairinhos, V.M., Lobo, V., Galindo, M.P.: Intersection graph-based representation of contingency tables, http://www.isegi.unl.pt/docentes/vlobo/Publicacoes/3_17_lobo08_DAIG_conting_tables.pdf

  43. Verroust, A., Viaud, M.-L.: Ensuring the drawability of extended euler diagrams for up to 8 sets. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 128–141. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  44. Wang, X., Bai, X., Yang, X., Wenyu, L., Latecki, L.J.: Maximal cliques that satisfy hard constraints with application to deformable object model learning. Advances in Neural Information Processing Systems 24, 864–872 (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Brimkov, V.E. (2014). Knapsack Intersection Graphs and Efficient Computation of Their Maximal Cliques. In: Zhang, Y.J., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2014. Lecture Notes in Computer Science, vol 8641. Springer, Cham. https://doi.org/10.1007/978-3-319-09994-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09994-1_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09993-4

  • Online ISBN: 978-3-319-09994-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics