Abstract
As an image can easily be modeled by its adjacency graph, graph theory and algorithms on graphs are widely used in imaging sciences. In this paper we define a knapsack graph, which is an intersection graph of integer translates of knapsack polygons, and consider the maximal clique problem on such graphs. A major application of intersection graphs is found in visualization of relations among objects in a scene. Efficient algorithms for the maximal clique problem are applicable to problems of computer graphics and image analysis, while properties of the knapsack polygon have been used in obtaining theoretical results in discrete geometry for computer imagery. We first show that the maximal clique problem on knapsack graphs is equivalent to the maximal clique problem on intersection graphs of homothetic right triangles. The latter was shown to be equivalent to the maximal clique problem on max-tolerance graphs and solvable in optimal O(n 3) time [28]. Thus, if the linear constraints defining the knapsack polygons are known, then the maximal clique problem on knapsack graphs can be solved using the algorithm from [28]. If the polygons are given by lists of their vertices and the defining constraints are unknown, we show how these can be found efficiently in computation time bounded by a low degree polynomial in the polygons size.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Altschul, W., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990), http://www.ncbi.nlm.nih.gov/BLAST/
Ambühl, C., Wagner, U.: The clique problem in intersection graphs of ellipses and triangles. Theory Comput. Syst. 38, 279–292 (2005)
Ballard, D.H., Brown, M.: Computer Vision. Prentice-Hall, Englewood Cliffs, N.J (1982)
Brimkov, V.E.: Vertices of the Knapsack Polytope. MS Thesis, University of Sofia (1984)
Brimkov, V.E.: A quasi-polynomial algorithm for the knapsack problem. Yugoslav J. Operations Research 4, 149–157 (1994)
Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points in a hyperball. Theoretical Computer Science 406, 24–30 (2008)
Brimkov, V.E., Kafer, S., Szczepankiewicz, M., Terhaar, J.: Maximal cliques in intersection graphs of quasi-homothetic trapezoids. In: Proc. MCURCSM 2013, Ohio, p. 10 (2013)
Brimkov, V.E., Kafer, S., Szczepankiewicz, M., Terhaar, J.: On intersection graphs of convex polygons. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 25–36. Springer, Heidelberg (2014)
Cabello, S., Cardinal, J., Langerman, S.: The clique problem in ray intersection graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 241–252. Springer, Heidelberg (2012)
Coeurjolly, D., Brimkov, V.E.: Computational aspects of digital plane and hyperplane recognition. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 291–306. Springer, Heidelberg (2006)
Čulík, K.: Applications of graph theory to mathematical logic and linguistics. In: Proc. Sympos. “Theory of Graphs and its Applications”, Smolenice, 1963, pp. 13–20. Publ. House Czechoslovak Acad. Sci., Prague (1964)
de Vieilleville, F., Lachaud, J.-O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 988–997. Springer, Heidelberg (2005)
Eisenbrand, F., Laue, S.: A faster algorithm for two-variable integer programming. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 290–299. Springer, Heidelberg (2003)
Erdős, P., Goodman, A.W., Pósa, L.: The representation of a graph by set intersections. Canad. J. Math. 18, 106–112 (1966)
Evako, A.V.: Topological properties of the intersection graph of covers of n-dimensional surfaces. Discrete Mathematics 147, 107–120 (1995)
Felsner, S., Müller, R., Wernisch, L.: Trapezoid graphs and generalizations, geometry and algorithms. Discrete Applied Mathematics 74, 13–32 (1993)
Fish, A., Stapleton, G.: Formal issues in languages based on closed curves. In: Proc. Distributed Multimedia Systems, pp. 161–167 (2006)
Gardiner, E.J.: Artymiuk, P.J., Willett, P.: Clique-detection algorithms for matching three-dimensional molecular structures. J. Molecular Graph Modelling 15(4), 245–253 (1997)
Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Acad. Press (1980)
Golumbic, M., Trenk, A.: Tolerance graphs. Cambridge Studies in Advanced Mathematics, vol. 89. Cambidge University Press (2005)
Heinzle, F., Ander, K.H., Sester, M.: Graph based approaches for recognition of patterns and implicit information in road networks. In: Proc. 22nd International Cartographic Conference, A Coruna (2005)
Haies, A.C., Larman, D.S.: The vertices of the knapsack polytope. Discr. Appl. Math. 6, 135–138 (1983)
Imai, H., Asano, T.: Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. Journal of Algorithms 4, 300–323 (1983)
Ion, A., Carreira, J., Sminchisescu, C.: Image segmentation by figure-ground composition into maximal cliques. In: Proc. 13th International Conference on Computer Vision, Barcelona, pp. 2110–2117 (2011)
Jacobson, M.S., Morris, F.R., Scheinermann, E.R.: General results on tolerance intersection graphs. J. Graph Theory 15, 573–577 (1991)
Junosza-Szaniawski, K., Kratochvíl, J., Pergel, M., Rzążewski, P.: Beyond Homothetic Polygons: Recognition and Maximum Clique. In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 619–628. Springer, Heidelberg (2012)
Klette, R., Rosenfeld, A.: Digital Geometry. Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)
Kaufmann, M., Kratochvíl, J., Lehmann, K., Subramanian, A.: Max-tolerance graphs as intersection graphs: cliques, cycles, and recognition. In: Proc. SODA 2006, pp. 832–841 (2006)
Kratochvíl, J.: Kuběna, A.: On intersection representations of co-planar graphs. Discrete Mathematics 178, 251–255 (1998)
Kratochvíl, J., Nešetřil, J.: Independent set and clique problems in intersection-defined classes of graphs. Comm. Math. Uni. Car. 31, 85–93 (1990)
Kratochvíl, J., Pergel, M.: Intersection graphs of homothetic polygons. Electronic Notes in Discr. Math. 31, 277–280 (2008)
McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. In: SIAM Monographs on Discrete Mathematics and Applications 2. SIAM, Philadelphia (1999)
Nakamura, H., Higashi, M., Hosaka, M.: Robust computation of intersection graph between two solids. Computer Graphics Forum 16, C79–C88 (1997)
Nakamura, H., Masatake, H., Mamoru, H.: Robust computation of intersection graph between two solids. Graphical Models 16(3), C79–C88 (1997)
Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and minimum object enclosing rectangles and cuboids. Computers Math. Applic. 29(8), 45–61 (1995)
Paget, R., Longsta, D.: Extracting the cliques from a neighbourhood System. IEE Proc. Vision Image and Signal Processing 144(3), 168–170 (1997)
Rubin, D.S.: On the unlimited number of faces in integer hulls of linear programs with a single constraint. Operations Research 18, 940–946 (1970)
Simonetto, P., Auber, D.: An heuristic for the construction of intersection graphs. In: 13th International Conference on Information Visualisation, pp. 673–678 (2009)
Simonetto, P., Auber, D.: Visualise undrawable Euler diagrams. In: Proc. 12th IEEE International Conference on Information Visualisation, pp. 594–599 (2008)
Szpilrajn-Marczewski, E.: Sur deux proprisétés des classes d’ensembles. Fund. Math. 33, 303–307 (1945)
Tian, J., Tinghua, A., Xiaobin, J.: Graph based recognition of grid pattern in street networks. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Advances in Spatial Data Handling and GIS. Lecture Notes in Geoinformation and Cartography, vol. 38, Part II, pp. 129–143 (2012)
Vairinhos, V.M., Lobo, V., Galindo, M.P.: Intersection graph-based representation of contingency tables, http://www.isegi.unl.pt/docentes/vlobo/Publicacoes/3_17_lobo08_DAIG_conting_tables.pdf
Verroust, A., Viaud, M.-L.: Ensuring the drawability of extended euler diagrams for up to 8 sets. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 128–141. Springer, Heidelberg (2004)
Wang, X., Bai, X., Yang, X., Wenyu, L., Latecki, L.J.: Maximal cliques that satisfy hard constraints with application to deformable object model learning. Advances in Neural Information Processing Systems 24, 864–872 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Brimkov, V.E. (2014). Knapsack Intersection Graphs and Efficient Computation of Their Maximal Cliques. In: Zhang, Y.J., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2014. Lecture Notes in Computer Science, vol 8641. Springer, Cham. https://doi.org/10.1007/978-3-319-09994-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-09994-1_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09993-4
Online ISBN: 978-3-319-09994-1
eBook Packages: Computer ScienceComputer Science (R0)