Skip to main content

Time-of-Flight Camera Based Virtual Reality Interaction for Balance Rehabilitation Purposes

  • Conference paper
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2014)

Abstract

The 3D Human Body Models (3D HBMs) and the 3D Virtual Reality Environments (3D VREs) enable users to interact with simulated scenarios in an engaging and natural way. The Computer Vision (CV) based Motion Capture (MoCap) systems allow us to obtain user models (i.e., self-avatars) without using cumbersome and uncomfortable physical tools (e.g., sensor suites) which could adversely affect user experience. This last point is of great importance in developing interactive applications for balance rehabilitation purposes where the recovery of lost skills is related to different factors (e.g., patient motivation) including spontaneity of the interaction during the virtual rehabilitative exercises. This paper presents an overview of the Customized Rehabilitation Framework (CRF), a single range imaging sensor based system oriented to patients who experienced with brain strokes, head traumas or neurodegenerative disorders. In particular, the paper is focused on the implementation of two new ad-hoc virtual exercises (i.e., Surfboard and Swing) supporting patients in recovering physical and functional balance. Observations on accuracy of user body models and their real-time interaction ability within rehabilitative simulated environments are presented. In addition, basic experiments concerning usefulness of the proposed exercises to support balance rehabilitation purposes are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2), 90–126 (2006)

    Article  Google Scholar 

  2. Berman, S., Stern, H.: Sensors for gesture recognition systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C 42(3), 277–290 (2012)

    Article  Google Scholar 

  3. Chen, L., Wei, H., Ferryman, J.: A survey of human motion analysis using depth imagery. Pattern Recognition Letters 34(15), 1995–2006 (2013)

    Article  Google Scholar 

  4. Zannatha, J.M.I., Tamayo, A.J.M., Sanchez, A.D.G., Delgado, J.E.L., Cheu, L.E.R., Arevalo, W.A.S.: Development of a system based on 3d vision, interactive virtual environments, ergonometric signals and a humanoid for stroke rehabilitation. Computer Methods and Programs in Biomedicine 112(2), 239–249 (2013)

    Article  Google Scholar 

  5. Chang, Y.J., Han, W.Y., Tsai, Y.C.: A kinect-based upper limb rehabilitation system to assist people with cerebral palsy. Research in Developmental Disabilities 34(11), 3654–3659 (2013)

    Article  Google Scholar 

  6. Bohil, C.J., Alicea, B., Biocca, F.A.: Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience 12, 752–762 (2011)

    Google Scholar 

  7. Chang, Y.J., Chen, S.F., Huang, J.D.: A kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Research in Developmental Disabilities 32(6), 2566–2570 (2011)

    Article  Google Scholar 

  8. Suau, X., Ruiz-Hidalgo, J., Casas, J.R.: Detecting end-effectors on 2. 5d data using geometric deformable models: Application to human pose estimation. Computer Vision and Image Understanding 117(3), 281–288 (2013)

    Google Scholar 

  9. Shen, J., Yang, W., Liao, Q.: Part template: 3d representation for multiview human pose estimation. Pattern Recognition 46(7), 1920–1932 (2013)

    Article  Google Scholar 

  10. Westfeld, P., Maas, H.G., Bringmann, O., Grollich, D., Schmauder, M.: Automatic techniques for 3d reconstruction of critical workplace body postures from range imaging data. Journal of Photogrammetry and Remote Sensing 85, 56–65 (2013)

    Article  Google Scholar 

  11. Mohr, R., Bajcsy, R.: Packing volumes by spheres. IEEE Transactions on Pattern Analysis and Machine Intelligence 5(1), 111–116 (1983)

    Article  Google Scholar 

  12. Badler, N., O’Rourke, J., Toltzis, H.: A spherical representation of a human body for visualizing movement. Proceedings of the IEEE 67(10), 1397–1403 (1979)

    Article  Google Scholar 

  13. Avola, D., Spezialetti, M., Placidi, G.: Design of an efficient framework for fast prototyping of customized human-computer interfaces and virtual environments for rehabilitation. Computer Methods and Programs in Biomedicine 110(3), 490–502 (2013)

    Article  Google Scholar 

  14. Spezialetti, M., Avola, D., Placidi, G., De Gasperis, G.: Movement analysis based on virtual reality and 3d depth sensing camera for whole body rehabilitation. In: Computational Modelling of Objects Represented in Images. Fundamentals, Methods and Applications, pp. 367–372. CRC Press, Taylor & Francis Group (2012)

    Google Scholar 

  15. Placidi, G.: A smart virtual glove for the hand telerehabilitation. Computers in Biology and Medicine 37(8), 1100–1107 (2007)

    Article  Google Scholar 

  16. Placidi, G., Avola, D., Iacoviello, D., Cinque, L.: Overall design and implementation of the virtual glove. Computers in Biology and Medicine 43(11), 1927–1940 (2013)

    Article  Google Scholar 

  17. IISUTM (2014), http://www.softkinetic.com/products/iisumiddleware.aspx

  18. IrrLicht (2014), http://irrlicht.sourceforge.net

  19. Vicon (2014), http://www.vicon.com/

  20. PTITM (2014), http://www.ptiphoenix.com

  21. STT (2014), http://www.stt-systems.com/en/

  22. Clark, R.A., Pua, Y.H., Fortin, K., Ritchie, C., Webster, K.E., Denehy, L., Bryant, A.L.: Validity of the microsoft kinect for assessment of postural control. Gait & Posture 36(3), 372–377 (2012)

    Article  Google Scholar 

  23. MicrosoftKinectTM (2014), http://www.microsoft.com/en-us/kinectforwindows

  24. MicrosoftSDK (2014), http://www.microsoft.com/en-us/kinectforwindowsdev/start.aspx

  25. Reyes, M., Clapés, A., Ramírez, J., Revilla, J.R., Escalera, S.: Automatic digital biometry analysis based on depth maps. Computers in Industry 64(9), 1316–1325 (2013)

    Article  Google Scholar 

  26. Hernández-López, J.J., Quintanilla-Olvera, A.L., López-Ramírez, J.L., Rangel-Butanda, F.J., Ibarra-Manzano, M.A., Almanza-Ojeda, D.L.: Detecting objects using color and depth segmentation with kinect sensor. Procedia Technology 3, 196–204 (2012)

    Article  Google Scholar 

  27. Camplani, M., Salgado, L.: Background foreground segmentation with rgb-d kinect data: An efficient combination of classifiers. Journal of Visual Communication and Image Representation 25(1), 122–136 (2014)

    Article  Google Scholar 

  28. Diraco, G., Leone, A., Siciliano, P.: In-home hierarchical posture classification with a time-of-flight 3d sensor. Gait & Posture 39(1), 182–187 (2014)

    Article  Google Scholar 

  29. Schonauer, C., Pintaric, T., Kaufmann, H., Jansen Kosterink, S., Vollenbroek-Hutten, M.: Chronic pain rehabilitation with a serious game using multimodal input. In: International Conference on Virtual Rehabilitation (ICVR), pp. 1–8 (2011)

    Google Scholar 

  30. IOTracker (2014), http://www.iotracker.com/

  31. Zhu, Y., Dariush, B., Fujimura, K.: Kinematic self retargeting: A framework for human pose estimation. Computer Vision and Image Understanding 114(12), 1362–1375 (2010)

    Article  Google Scholar 

  32. Shum, H.P.H., Ho, E.S.L., Jiang, Y., Takagi, S.: Real-time posture reconstruction for microsoft kinect. IEEE Transaction on Cybernetics 43(5), 1357–1369 (2013)

    Article  Google Scholar 

  33. Metcalf, C., Robinson, R., Malpass, A., Bogle, T., Dell, T., Harris, C., Demain, S.: Markerless motion capture and measurement of hand kinematics: Validation and application to home-based upper limb rehabilitation. IEEE Transactions on Biomedical Engineering 60(8), 2184–2192 (2013)

    Article  Google Scholar 

  34. Rose, F.D., Brooks, B.M., Virtual, A.R.: reality in brain damage rehabilitation: Review. CyberPsychology & Behavior 8(3), 241–262 (2005)

    Article  Google Scholar 

  35. Cho, S., Ku, J., Cho, Y.K., Kim, I.Y., Kang, Y.J., Jang, D.P., Kim, S.I.: Development of virtual reality proprioceptive rehabilitation system for stroke patients. Computer Methods and Programs in Biomedicine 113(1), 258–265 (2014)

    Article  Google Scholar 

  36. Yue, H., Chen, W., Wu, X., Liu, J.: Fast 3d modeling in complex environments using a single kinect sensor. Optics and Lasers in Engineering 53, 104–111 (2014)

    Article  Google Scholar 

  37. OptriCamTM311 (2014), http://www.softkinetic.com/solutions

  38. Direct3D (2014), http://msdn.microsoft.com/en-us/directx/aa937781.aspx

  39. OpenGL (2014), http://www.opengl.org/

  40. XML (2014), http://www.ambiera.com/irrxml

  41. Moro, S.B., Bisconti, S., Muthalib, M., Spezialetti, M., Cutini, S., Ferrari, M., Placidi, G., Quaresima, V.: A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: A functional near-infrared spectroscopy study. NeuroImage 85(pt. 1), 451–460 (2014)

    Article  Google Scholar 

  42. Ferrari, M., Bisconti, S., Spezialetti, M., Basso Moro, S., Palo, C., Placidi, G., Quaresima, V.: Prefrontal cortex activated bilaterally by a tilt board balance task: A functional near-infrared spectroscopy study in a semi-immersive virtual reality environment. Brain Topography, 1–13 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Avola, D., Cinque, L., Levialdi, S., Petracca, A., Placidi, G., Spezialetti, M. (2014). Time-of-Flight Camera Based Virtual Reality Interaction for Balance Rehabilitation Purposes. In: Zhang, Y.J., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2014. Lecture Notes in Computer Science, vol 8641. Springer, Cham. https://doi.org/10.1007/978-3-319-09994-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09994-1_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09993-4

  • Online ISBN: 978-3-319-09994-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics