Skip to main content

Ontology Driven Indexing: Application to Personalized Information Retrieval

  • Conference paper
Database and Expert Systems Applications (DEXA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8644))

Included in the following conference series:

  • 1236 Accesses

Abstract

Our work addresses the problem of information retrieval (IR) in an heterogeneous environment by a model driven information retrieval infrastructure that allows each user to explicitly personalize the indexing and retrieval processes. In this paper, we propose an ontological approach to represent a particular user’s need, his preferences, his context and his processes within the information system. Then, we define an algorithm to automatically construct personalized IR models. Afterwards, we describe an architecture to handle these models in order to provide personalized answers. Lastly, we show that system responses are entirely personalized and semantically enhanced by the ontological representation behind. These contributions are designed to allow the integration of external knowledge and their fundations enable an adaptation to various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abiteboul, S., Manolescu, I., Rigaux, P., Rousset, M.C., Senellart, P.: Web Data Management. Cambridge University Press (2011)

    Google Scholar 

  2. Beppler, F.D., Fonseca, F.T., Pacheco, R.C.S.: Hermeneus: An Architecture for an Ontology-Enabled Information Retrieval (2008)

    Google Scholar 

  3. Bruno, E., Faessel, N., Glotin, H., Le Maitre, J., Scholl, M.: Indexing and querying segmented web pages: the blockweb model. World Wide Web 14(5), 623–649 (2011), doi:10.1007/s11280-011-0124-6

    Article  Google Scholar 

  4. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 391–407 (1990)

    Article  Google Scholar 

  5. Fernández, M., Cantador, I., Lopez, V., Vallet, D., Castells, P., Motta, E.: Semantically enhanced information retrieval: An ontology-based approach. J. Web Sem. 9(4), 434–452 (2011)

    Article  Google Scholar 

  6. W3C OWL Working Group. OWL Web Ontology Language: Overview, W3C Recommendation (2009)

    Google Scholar 

  7. Gruber, T.R.: Towards principles for the design of ontologies used for knowledge sharing in formal ontology in conceptual analysis and knowledge representation. Kluwer Academic Publishers (1993)

    Google Scholar 

  8. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  9. Maron, M.E., Kuhns, J.L.: On relevance, probabilistic indexing and information retrieval. J. ACM 7, 216–244 (1960)

    Article  Google Scholar 

  10. Mylonas, P., Vallet, D., Castells, P., Fernández, M., Avrithis, Y.: Personalized information retrieval based on context and ontological knowledge. Knowledge Engineering Review 23(1) (2008)

    Google Scholar 

  11. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: SIGIR 1998: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275–281. ACM Press, New York (1998)

    Google Scholar 

  12. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M.: Okapi at trec-3, pp. 109–126 (1996)

    Google Scholar 

  13. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18, 613–620 (1975)

    Article  MATH  Google Scholar 

  14. Singhal, A., Buckley, C., Mitra, M., Mitra, A.: Pivoted document length normalization, pp. 21–29. ACM Press (1996)

    Google Scholar 

  15. Turtle, H., Croft, W.B.: Inference networks for document retrieval. In: Proceedings of the 13th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1990, pp. 1–24. ACM, New York (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Martin, V., Bruno, E., Murisasco, E. (2014). Ontology Driven Indexing: Application to Personalized Information Retrieval. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds) Database and Expert Systems Applications. DEXA 2014. Lecture Notes in Computer Science, vol 8644. Springer, Cham. https://doi.org/10.1007/978-3-319-10073-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10073-9_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10072-2

  • Online ISBN: 978-3-319-10073-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics