

Edinburgh Research Explorer

An Analysis Pathway for the Quantitative Evaluation of Public
Transport Systems

Citation for published version:
Vandin, A, Tribastone, M & Gilmore, S 2014, An Analysis Pathway for the Quantitative Evaluation of Public
Transport Systems. in Integrated Formal Methods: 11th International Conference, IFM 2014, Bertinoro, Italy,
September 9-11, 2014, Proceedings. Springer International Publishing, pp. 71-86.
https://doi.org/10.1007/978-3-319-10181-1_5

Digital Object Identifier (DOI):
10.1007/978-3-319-10181-1_5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Integrated Formal Methods

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1007/978-3-319-10181-1_5
https://doi.org/10.1007/978-3-319-10181-1_5
https://www.research.ed.ac.uk/en/publications/e353f7e9-804b-4dfa-9b59-a04bcb256fbd

An Analysis Pathway for the Quantitative Evaluation of
Public Transport Systems

Andrea Vandin1, Mirco Tribastone1, and Stephen Gilmore2

1 Electronics and Computer Science, University of Southampton
2 Laboratory for Foundations of Computer Science, University of Edinburgh

Abstract. We consider the problem of evaluating quantitative service-level agree-
ments in public services such as transportation systems. We describe the integra-
tion of quantitative analysis tools for data fitting, model generation, simulation,
and statistical model-checking, creating an analysis pathway leading from system
measurement data to verification results. We apply our pathway to the problem
of determining whether public bus systems are delivering an appropriate qual-
ity of service as required by regulators. We exercise the pathway on service data
obtained from Lothian Buses about the arrival and departure times of their buses
on key bus routes through the city of Edinburgh. Although we include only that
example in the present paper, our methods are sufficiently general to apply to
other transport systems and other cities.

1 Introduction

Modern public transport systems are richly instrumented. The vehicles in a modern
bus fleet are equipped with accurate GPS receivers, Wi-Fi, and on-board communi-
cations, allowing them to report their location for purposes such as fleet management
and arrival-time prediction. High-frequency, high-resolution location data streams back
from the vehicles in the fleet to be consumed by the predictive models used in real-time
bus tracking systems.

We live in a data-hungry world. Users of public transport systems now expect to be
able to access live data about arrival times, transit connections, service disruptions, and
many other types of status updates and reports at almost every stage of their journey.
Studies suggest that providing real-time information on bus journeys and arrival times in
this way encourages greater use of buses [1] with beneficial effects for the bus service.
In contrast, when use of buses decreases, transport experts suggest that this aggravates
existing problems such as outdated routes, bunching of vehicles, and insufficient pro-
vision of greenways or bus priority lanes. Each of these problems makes operating the
bus service more difficult. Bus timetables become less dependable, new passengers are
discouraged from using the bus service due to bad publicity, which leads inevitably to
budget cuts that further accelerate the decline of the service.

Service regulators are no less data-hungry than passengers, requiring transport oper-
ators to report service-level statistics and key performance indicators which are used to
assess the service delivered in practice against regulatory requirements on the quality of
service expected. Many of these regulatory requirements relate to punctuality of buses,

defined in terms of the percentage of buses which depart within the window of toler-
ance around the timetabled departure time; and reliability of buses, defined in terms of
the number of miles planned and the number of miles operated. The terms schedule
adherence or on-time performance are also used to refer to the degree of success of a
transportation service running to the published timetable.

With the aim of helping service providers to be able to work with models which
can be used to analyse and predict on-time performance, we have connected a set
of modelling and analysis tools into an analysis pathway, starting from system mea-
surement data, going through data fitting, model generation, simulation and statistical
model-checking to compute verification results which are of significance both to service
providers and to regulatory authorities.

The steps of the analysis pathway, depicted in Figure 1, are as follows:

1. Data is harvested from a bus tracking system to compile an empirical cumula-
tive distribution function data set of recorded journey times for each stage of the
bus journey. In this paper, we generate inputs to the system using the BusTracker
automatic vehicle tracking system developed by the City of Edinburgh council and
Lothian Buses [2].

2. The software tool HyperStar [3] is used to fit phase-type distributions to the data
sets.

3. A phase-type distribution enables a Markovian representation of journey times
which can be encoded in high-level formalisms such as stochastic process algebras.
In particular, we use the Bus Kernel model generator (BusKer), a Java applica-
tion which consumes the phase-type distribution parameters computed by Hyper-
Star and generates a formal model of the bus journey expressed in the Bio-PEPA
stochastic process algebra [4]. In addition, the BusKer tool generates an expres-
sion in MultiQuaTEx, the query language supported by the MultiVeStA statistical
model-checker [5]. This is used to formally express queries on service-level agree-
ments about the bus route under study.

4. The Bio-PEPA Eclipse Plugin [6] is used to perform stochastic simulations of the
Bio-PEPA model.

5. MultiVeStA is hooked to the simulation engine of the Bio-PEPA Eclipse Plugin,
consuming individual simulation events to evaluate the automatically generated
MultiQuaTEx expressions. It produces as its results plots of the related quantita-
tive properties.

We are devoting more than the usual amount of effort to ensuring that our tools are
user-friendly and easy-to-use. This is because we want our software tools to be used “in-
house” by service providers because only then can service providers retain control over
access to their own proprietary data about their service provision. With respect to ease-
of-use in particular, making model parameterisation simpler is a crucial step in making
models re-usable. Because vehicle occupancy fluctuates according to the seasons, with
the consequence that buses spend more or less time at bus stops boarding passengers, it
is essential to be able to re-parameterise and re-run models for different data sets from
different months of the year.

It is also necessary to be able to re-run an analysis based on historical measurement
data if timetables change, or the key definitions used in the evaluation of regulatory

BusTracker HyperStar BusKer Bio-PEPA MultiVeStA

Fig. 1. The analysis pathway.

requirements change. Evidently, a high degree of automation in the process is essential,
hence our interest in an analysis pathway.

Related work. We are not aware of other toolchains based on formal methods for the
quantitative analysis of public transportation systems. The same bus system is studied
in [7], from which we inherited the data-set acquisition and its fitting to phase-type
distributions. Differently from our approach, in [7] different software tools are individ-
ually used to perform distinct analyses of the scenario. For example, the Traviando [8]
post-mortem simulation trace analyser is fed with precomputed simulation traces of a
Bio-PEPA model similar to ours, and the probabilistic model checker PRISM [9] is used
to analyse a corresponding model defined in the PRISM’s input language.

More generally, our approach takes inspiration from generative programming tech-
niques [10], in that we aim at automatic generation of possibly large stochastic process
algebra models (our target language) from more compact higher-level descriptions (i.e.,
the timetable representation and the model parameters).

The generation of MultiQuaTEx expressions fits well with the literature on higher-
level specification patterns for temporal logic formulae [11]. Temporal logics, the com-
mon property specification languages of model checkers, are not in widespread use
in industry, as they require a high degree of mathematical maturity and experience in
formal language theory. Furthermore, most system requirements are written in natu-
ral language, and often contain ambiguities which make it difficult to accurately for-
malise them in any temporal logic. In an attempt to ease the use of temporal logic, [11]
gives a pattern-based classification for capturing requirements, paving the way for semi-
automated methodologies for the generation of inputs to model checking tools. From a
general perspective, in this work we fix the property patterns of interest, and completely
hide property generation and evaluation to the end user.

Paper structure. Section 2 motivates our reasons for constructing a stochastic model of
the problem. Section 3 describes the analysis problem in greater detail and presents the
key definitions used in the paper. Section 4 describes how measurement data is trans-
formed into model parameters to initiate the analysis which is undertaken. Section 5
describes the software tools in the analysis pathway. Section 6 presents the software
analyser which combines these disparate tools. Section 7 presents our analysis in terms
of the key definitions of the paper. Conclusions are presented in Section 8.

2 The importance of modelling

We are working in a context where we have an existing operational instrumented system
which is gathering data on its service provision. However, instead of working directly
with the data we will construct a high-level stochastic model of the data, using Erlang
distributions with a number of phases and an exponentially-distributed rate to describe
a journey between two timing points. The timing points are those bus stops which are
named in the published timetable for the route.

We work with a stochastic model instead of working with the data directly because,
importantly, we are not concerned with detecting post-hoc violations of the regulations
from measurement data. Rather, we are trying to estimate the likelihood of future vio-
lations of the regulations in journeys which are similar to those which we have seen,
although not identical to them. For this reason we generalise from the data to a stochas-
tic process which describes the data well in a precise sense statistically.

Measurement data only records particular historical events: it does not generalise.
For example, if our collected observations tell us that a bus journey can take five, six,
eight, or nine minutes it is reasonable to assume that it can also take seven minutes,
although this is not actually recorded in the data. Generalising from data like this is the
act of abstraction which is at the heart of modelling. Models have many other strengths.

– Models are intellectual tools for understanding systems. They can be understood by
service operators and used to communicate with regulators or other stakeholders.

– Models impose order on data, shaping it to become information which can be used
in making decisions about how systems are modified.

– Models are concise and can be easily compared. In contrast, data is verbose and
difficult to compare.

– Models are high-level and structured. Data is low-level and unstructured.
– Models are scalable. The number of phases in the stochastic description of the jour-

ney can be easily modified in order to explore the effect of different routes. Adding
more phases corresponds to lengthening the route; removing phases corresponds to
shortening it. Data is not scalable in this way.

– Models are tuneable. Rates can be easily adjusted in order to explore the effect of
increased congestion on the routes or the effect of changes in the speed limit on
parts of a route. Data is not tuneable in this way.

– Models are editable in a way which data is not. We can predict the effect of planned
engineering works on journey times by using measurement data which incorporates
the effect of previous engineering works and scaling it to fit if needed.

Because measurement data consists of a finite number of observations we know that
there is additional possible behaviour which we have not seen. Stochastic modelling is a
powerful reasoning tool allowing us to estimate the likelihood of values which we have
not seen based on the frequency of occurrences of those values which we have seen.
Conclusions drawn solely from the data would be misleading in that we would be led
to believe that some combinations of events were impossible when in fact they are only
relatively unlikely.

Finally, in moving from the data to the stochastic model we only need to ensure that
we have identified a suitable stochastic process to represent the data. In Section 4 we
will explain the use of the Kolmogorov-Smirnov statistical test to ensure this.

3 The analysis problem

The notion of punctuality which we are considering here is defined in terms of the con-
cept of a “window of tolerance” around the departure times advertised in the timetable.
Perhaps not very surprisingly, this notion differs between different operators and differ-
ent countries, for instance:

– According to Transport for London, a bus is considered to be on time if it departs
between two minutes and 30 seconds early and five minutes late [12].

– In England outside London, a bus is considered to be on time if it departs between
one minute early and five minutes, 59 seconds late [13].

– In Scotland, according to the definitions reported in the Scottish Government’s Bus
Punctuality Improvement Partnerships report, a bus is considered to be on time if
it departs between one minute early and five minutes late [14].

Each region has a definition of on-time in terms of the window of tolerance but clearly
when comparing the quality of service in one region with the quality of service in
another it is necessary to be able to re-evaluate the service delivered historically against
the definitions used by another.

Our problem is to generate a mathematical model which allows us to analyse the
following properties, for each bus stop advertised in a timetable.

P1. The average time of departure from the bus stop.
P2. The average distance of the departure time from the timetabled time.
P3. The probability that a bus departs on time.
P4. The probability of an early departure.
P5. The probability of a late departure.

Since the window of tolerance is asymmetric with respect to the timetable, property
P2 is formally defined as the expected value of the absolute value of the difference
between the time of departure and the respective timetabled time. Note that properties
P3–P5 clearly depend on the notion of punctuality adopted.

In this paper we focus on a particular bus route. Specifically, we consider the Loth-
ian Buses #31 bus on its journey from North Bridge in Edinburgh’s city centre to Bon-
nyrigg Toll in the south, passing through the Cameron Toll and Lasswade Road timing
points. The same bus route has been studied in [7], as discussed in Section 1. Table 1
shows its timetable, where the departure time from North Bridge is taken as the refer-
ence time 0.

Timing point Code Timetable (in minutes)
North Bridge NB 0
Cameron Toll CT 16
Lasswade Road LR 24
Bonnyrigg Toll BT 34

Table 1. Timetable for the #31 bus operated by Lothian Buses in Edinburgh.

4 From measurement data to model parameters

We now turn our attention to how model parameters are found for a BusKer input.

4.1 The BusTracker data

The raw data which is the input to the pathway is a dataset compiling measured journey
times between timing points, forming an empirical distribution over the journey times.
This data set incorporates the unpredictable effects of many different types of delays
which the service can experience, due to traffic congestion and competition with other
buses for access to bus stops. The data is obtained from the passenger waiting time
website for Lothian Buses [2]. We collected raw data from this website by scripting,
and wrote the data to a file for post-processing. This data is available from the QUAN-
TICOL website at http://www.quanticol.eu. Post-processing identified departure events
in the data, and computed journey times between timing points, compiling an empirical
distribution of journey times.

4.2 HyperStar

Phase-type distributions are a class of probability distributions formally defined as the
time to absorption of a continuous-time Markov chain (CTMC). They are very popular
in the performance evaluation community because they can approximate, with arbi-
trary precision, generally-distributed events by means of appropriate stages (or phases)
of independent exponential distributions [15]. Concretely, this allows a modeller to
accurately describe general systems exhibiting nonexponential distributions using a
Markov chain as the underlying mathematical formalism. An Erlang distribution, here-
after denoted by Erl(k,l), is a special case of a series of k > 0 exponential phases, each
with mean duration given by 1/l , with l > 0. The mean duration of the distribution is
k/l . It is particularly useful for modelling activities with low variance — in the limit
k ! • it behaves deterministically. It has been found in [7] to approximate bus journey
times well. For this reason, our current implementation supports Erlang distributions
only, although an extension to general phase-type distributions is possible.

Given a set of observed durations, the problem is to find the parameters of a phase-
type distribution that fits them most appropriately (according to some criterion of opti-
mality). For an Erlang distribution, this amounts to finding the values of the parameters
k and l that completely characterise it. For this, we use HyperStar, a new software tool
released in 2013 [3] to convert our empirical distribution to an analytic one.

4.3 The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test can be used to quantify the distance between an empiri-
cal distribution function and a cumulative distribution function. The test can be used to
answer the question whether the data would be thought to have come from the speci-
fied distribution. We applied this test to the empirical data and the Erlang distributions
returned by HyperStar. The null hypothesis was accepted with credible test statistics
and critical values in all three cases meaning that the Erlang distributions are suitable
stochastic process descriptions of the data.

5 The analysis pathway

In this section we describe in more detail the modelling tools and formal languages of
our analysis pathway, as well as their integration.

5.1 BusKer

The Bus Kernel model generator (BusKer) is a Java command-line application that
takes as input the specification of the window of tolerance (parameters maxAdvance

and maxDelay, respectively) and a BusKer specification, i.e. a comma-separated rep-
resentation of the timetable and the Erlang distribution for the time to reach the next
timetabled bus stop. For instance, in this paper we will consider the parameter fitting
used in [7] for the route in Table 1, which yields the following BusKer specification:

Timing point,Code,Timetable,k,l
North Bridge,NB,0,105,6.47
Cameron Toll,CT,16,83,8.79 (1)
Lasswade Road,LR,24,98,10.54
Bonnyrigg Toll,BT,34,�,�

As a result, BusKer generates the inputs for the next two steps of our analysis pathway:
a Bio-PEPA model of the bus service, and the MultiQuaTEx expression analysed by
MultiVeStA to state the quality of the studied bus service with respect to the provided
window of tolerance.

5.2 Bio-PEPA

Although designed for application to modelling problems in biological systems, Bio-
PEPA has been effectively applied to problems as diverse as crowd dynamics [16],
emergency egress [17] and swarm robotics [18]. Here, we use it because it is a stochastic
process algebra with an underlying CTMC semantics; as such it is possible to encode
phase-type distributions in Bio-PEPA. Furthermore, it is implemented by a software
tool, the BioPEPA Eclipse Plugin, which supports stochastic simulation in a way that is
easily consumable by MultiVeStA. Referring the reader to [4] for the complete formal
account, we will use the following simplified BusKer specification to briefly overview
the language:

Timing point,Code,Timetable,k,l
North Bridge,NB,0,3,0.19 (2)
Cameron Toll,CT,16,�,�

BusKer will generate the specification shown in Listing 1.1. The model concerns the
five species NB 1, NB 2, NB 3, CT 1 and DepsFromNB, representing the number of buses
in North Bridge (NB 1), those in the first (NB 2) and second (NB 3) part of the jour-
ney from North Bridge to Cameron Toll, and the number of buses at Cameron Toll

1 // Definitions of rate functions
2 // Functions for North Bridge -> Cameron Toll (3 phases)
3 NBtoCT_1 = [0.19 * NB_1];
4 NBtoCT_2 = [0.19 * NB_2];
5 NBtoCT_ARRIVED = [0.19 * NB_3];
6 // Definitions of processes
7 // Processes for North Bridge -> Cameron Toll (3 phases)
8 NB_1 = NBtoCT_1 << ;
9 NB_2 = NBtoCT_1 >> + NBtoCT_2 << ;

10 NB_3 = NBtoCT_2 >> + NBtoCT_ARRIVED << ;
11 // Cameron Toll is the final stop.
12 CT_1 = NBtoCT_ARRIVED >> ;
13 // State observations
14 DepsFromNB = NBtoCT_1 >> ;
15 // Initial configuration of the system (one bus in North Bridge)
16 NB_1 [1] <*> NB_2 [0] <*> NB_3 [0] <*>
17 CT_1 [0] <*>
18 DepsFromNB [0]

Listing 1.1. The Bio-PEPA model generated by BusKer for the scenario of (2)

(CT 1). Finally, DepsFromNB is an observer process used to count the number of depar-
tures from North Bridge. Lines 16–18 provide the initial system configuration: one
bus is in North Bridge, while all the other populations are set to 0. A reaction pre-
fix such as NBtoCT 1<< in a species definition (e.g. NB 1 = NBtoCT 1<< at line 8)
causes the population count of that species (NB 1) to decrease by one when the reaction
NBtoCT 1 occurs. In particular, line 3 specifies that the reaction NBtoCT 1 occurs with
a rate obtained by multiplying the constant 0.19 with the population count of the species
NB 1. In our model we follow the journey of a single prototypical bus, so this product in
the rate expression acts as a switch, allowing the reaction to fire when a bus is present
and preventing it from firing at other times (because the rate evaluates to 0 when a bus
is not present). Similar to this is the case of the reaction prefix NBtoCT 1>>, the only
difference being that in this case the involved population counts increase by one. For
example, line 14 specifies that the population of the species DepsFromNB increases by
one whenever the reaction NBtoCT 1 occurs, making DepsFromNB a de facto counter
for the departures of buses from North Bridge. In contrast, line 10 specifies that the
population of the species NB 3, i.e. the buses in the second part of the journey from
North Bridge to Cameron Toll, increases by one whenever a bus moves from the first
to the second part of the journey (NBtoCT 2>>), and decreases by one whenever a bus
arrives at Cameron Toll (NBtoCT ARRIVED<<).

The Bio-PEPA model built from the input to BusKer is a statistically-plausible
stochastic model of the journey of a prototypical bus travelling from the first to the
last specified bus stops, using the Erlang parameters learnt from the measurement data
which has been processed by HyperStar. Clearly, the predictive power of this model
depends crucially on the quality and scope of the data supplied to HyperStar. Because
it is ultimately learnt from data, the model will incorporate the effects of contention for
bus stops with other buses serving the same route, and, for good or ill, it will incorporate
the influence of any atypical events (e.g. unusually long delays) which occurred during
the measurement period.

1 DepartureTime(depsFromBusStop) =
2 i f { s . r v a l (depsFromBusStop) == 1.0 } t h e n s . r v a l ("time")
3 e l s e # DepartureTime(depsFromBusStop)
4 f i ;
5 e v a l E[DepartureTime (" DepsFromNB ")]; e v a l E[DepartureTime (" DepsFromCT ")];
6 e v a l E[DepartureTime (" DepsFromLR ")];

Listing 1.2. A MultiQuaTEx expression to query expected departure times

5.3 MultiVeStA

MultiVeStA [5] is a recently-developed Java-based distributed statistical model checker
which allows its users to enrich existing discrete event simulators with automated and
statistical analysis capabilities. The analysis algorithms of MultiVeStA do not depend
on the underlying simulation engine: MultiVeStA only makes the assumption that mul-
tiple discrete event simulations can be performed on the input model. The tool has been
used to reason about collision-avoidance robots [19], volunteer clouds [20] and crowd-
steering [21] scenarios.

MultiVeStA comes with a property specification language, MultiQuaTEx, which
makes it possible for users to express and evaluate many properties over the same sim-
ulated path. In contrast to Continuous Stochastic Logic [22, 23] and Probabilistic Com-
putation Tree Logic [24] commonly used in probabilistic and statistical model checking,
MultiQuaTEx allows users to define their own parametric recursive temporal operators
within the logic itself, and to query real-typed properties, rather than just probabilities.
In particular, with MultiQuaTEx we can express all the properties listed in Section 3.

A MultiQuaTEx expression is evaluated statistically. Given a statistical estimate
x, then with probability (1 � a) its true value lies within the interval [x � d/2, x +
d/2], where (a,d) is a user-specified confidence interval. An in-depth presentation of
MultiQuaTEx is out of the scope of this paper, but can be found in [5].

Listing 1.2 provides a MultiQuaTEx expression to estimate the expected departure
times from each bus stop of interest (property P1) using the BusKer specification (1).
Lines 5–6 specify the three expected values to be estimated, i.e. the departure times
from North Bridge, Cameron Toll and Lasswade Road. Lines 1–4 specify a parametric
recursive temporal operator which returns, for each simulation, the departure time of
the bus from the bus stop specified as the parameter. This is iteratively evaluated by
performing steps of simulations (triggered by the operator #) until the guard of the if

statement is satisfied, i.e. until a departure occurs from the selected bus stop. Intuitively,
as discussed in Section 5.2, the Bio-PEPA model generated by BusKer counts the depar-
tures from each bus stop by defining observer processes DepsFromNB, DepsFromCT
and DepsFromLR whose populations are incremented every time the corresponding
event happens. Finally, we note that MultiVeStA can access information about the cur-
rent state of the simulation with s.rval(observation), where observation can
be the current simulated time (i.e. time), or the current population of a species (e.g.
"DepsFromNB").

Fig. 2. Plot generated by TBA for the specification presented in Equation (1), and the (1,5) win-
dow of tolerance.

6 Tool chaining: The Bus Analyzer

The last three tools of our analysis pathway, highlighted in Figure 1, have been inte-
grated in a single tool called TBA: The Bus Analyzer. TBA hides from the user the steps
involved in the generation of the Bio-PEPA model and of the MultiQuaTEx expres-
sion, as well as the invocation of MultiVeStA. TBA can be downloaded, together with
our BusKer specification (1), from the Tools section of the QUANTICOL web-site at
http://www.quanticol.eu/.

A first clear advantage brought by TBA is the automation of the analysis phase, as
the user only has to execute the command

java -jar TBA.jar busker scenario.busker maxAdv maxDelay [servers] (3)

where scenario.busker is a file containing a BusKer specification, and maxAdv and
maxDelay specify the required window of tolerance (in minutes). The optional parame-
ter servers gives the degree of parallelism to automatically distribute independent sim-
ulations across CPU cores.

TBA evaluates properties P1–P5. The results are provided to the user via a GUI
consisting of an interactive scatter plot containing a point for each studied property, and

1 // Definitions of rate functions
2 // Functions for North Bridge -> Cameron Toll (105 phases)
3 NBtoCT_1 = [6.47 * NB_1];
4 ...
5 NBtoCT_104 = [6.47 * NB_104];
6 NBtoCT_ARRIVED = [6.47 * NB_105];
7 // Functions for Cameron Toll -> Lasswade Road (83 phases)
8 CTtoLR_1 = [8.79 * CT_1];
9 ...

10 CTtoLR_82 = [8.79 * CT_82];
11 CTtoLR_ARRIVED = [8.79 * CT_83];
12 // Functions for Lasswade Road -> Bonnyrigg Toll (98 phases)
13 LRtoBT_1 = [10.54 * LR_1];
14 ...
15 LRtoBT_97 = [10.54 * LR_97];
16 LRtoBT_ARRIVED = [10.54 * LR_98];
17 // Definitions of processes
18 // Processes for North Bridge -> Cameron Toll (105 phases)
19 NB_1 = NBtoCT_1 <<;
20 NB_2 = NBtoCT_1 >> + NBtoCT_2 <<;
21 ...
22 NB_104 = NBtoCT_103 >> + NBtoCT_104 <<;
23 NB_105 = NBtoCT_104 >> + NBtoCT_ARRIVED <<;
24 // Processes for Cameron Toll -> Lasswade Road (83 phases)
25 CT_1 = NBtoCT_ARRIVED >> + CTtoLR_1 <<;
26 CT_2 = CTtoLR_1 >> + CTtoLR_2 <<;
27 ...
28 CT_82 = CTtoLR_81 >> + CTtoLR_82 <<;
29 CT_83 = CTtoLR_82 >> + CTtoLR_ARRIVED <<;
30 // Processes for Lasswade Road -> Bonnyrigg Toll (98 phases)
31 LR_1 = CTtoLR_ARRIVED >> + LRtoBT_1 <<;
32 LR_2 = LRtoBT_1 >> + LRtoBT_2 <<;
33 ...
34 LR_97 = LRtoBT_96 >> + LRtoBT_97 <<;
35 LR_98 = LRtoBT_97 >> + LRtoBT_ARRIVED <<;
36 // Bonnyrigg Toll is the final stop.
37 BT_1 = LRtoBT_ARRIVED >>;
38 // State observations
39 DepsFromNB = NBtoCT_1 >>; DepsFromCT = CTtoLR_1 >>; DepsFromLR = LRtoBT_1 >>;
40 // Initial configuration of the system (one bus in North Bridge)
41 NB_1 [1] <*> ... <*> NB_105 [0] <*>
42 CT_1 [0] <*> ... <*> CT_83 [0] <*>
43 LR_1 [0] <*> ... <*> LR_98 [0] <*> BT_1 [0] <*>
44 DepsFromNB [0] <*> DepsFromCT [0] <*> DepsFromLR [0]

Listing 1.3. The Bio-PEPA model generated by BusKer for input Equation (1)

are also stored on disk. For example, the interactive plot allows the modeller to hide
some properties, to apply zooming or rescaling operations, to change the considered
boundaries, and to save the plot as a picture. Figure 2 depicts the plot obtained for
the BusKer specification (1) when considering the Scottish window of tolerance, i.e.,
maxAdv=1 and maxDelay=5. A discussion of the analysis is provided in Section 7. In
the remainder of this section we focus on the usability and accessibility advantages
provided by chaining the three tools.

Clearly, given that TBA hides the generation of the model and of the property, as
well as their analysis, the user is not required to learn the two formal languages, nor to
use their related tools. Furthermore, for realistic bus scenarios the generated Bio-PEPA
models and MultiQuaTEx expressions tend to be large and thus error-prone to write
down manually. For example, the Bio-PEPA model generated by TBA for our scenario

1 // Static part of the expression : the parametric temporal operators
2 // Probabilities of departing on time , too early or too late
3 DepartedOnTime(depsFromBusStop ,timeTabledDep ,maxAdv ,maxDelay) =
4 i f { s . r v a l (depsFromBusStop) == 1.0 }
5 t h e n CheckIfDepOnTime(depsFromBusStop ,timeTabledDep ,maxAdv ,maxDelay)
6 e l s e # DepartedOnTime(depsFromBusStop ,timeTabledDep ,maxAdv ,maxDelay)
7 f i ;
8 CheckIfDepOnTime(depsFromBusStop ,timeTabledDep ,maxAdv ,maxDelay) =
9 i f { timeTabledDep - s . r v a l ("time") > maxAdv }

10 t h e n 0.0
11 e l s e i f { s . r v a l ("time") - timeTabledDep > maxDelay }
12 t h e n 0.0 e l s e 1.0
13 f i
14 f i ;
15 DepartedTooEarly(depsFromBusStop ,timeTabledDep ,maxAdv) =// like DepartedOnTime
16 DepartedTooLate(depsFromBusStop ,timeTabledDep ,maxDelay)=// like DepartedOnTime
17 // Expected departure time
18 DepartureTime(depsFromBusStop) = //as in Listing 1.2
19 // Expected deviation from the timetabled departure time
20 DistanceFromTimeTable(depsFromBusStop ,timeTabledDep) =
21 i f { s . r v a l (depsFromBusStop) == 1.0 }
22 t h e n ComputeDistanceFromTimeTable(depsFromBusStop ,timeTabledDep)
23 e l s e # DistanceFromTimeTable(depsFromBusStop ,timeTabledDep)
24 f i ;
25 ComputeDistanceFromTimeTable(depsFromBusStop ,timeTabledDep) =
26 i f { timeTabledDep > s . r v a l ("time") }
27 t h e n timeTabledDep - s . r v a l ("time") e l s e s . r v a l ("time") - timeTabledDep
28 f i ;
29 // Static part of the expression : the 15 properties to be estimated
30 e v a l E[DepartureTime (" DepsFromNB ")];
31 e v a l E[DistanceFromTimeTable (" DepsFromNB ",0.0)];
32 e v a l E[DepartedOnTime (" DepsFromNB " ,0.0 ,1.0 ,5.0)];
33 e v a l E[DepartedTooEarly (" DepsFromNB " ,0.0 ,1.0)];
34 e v a l E[DepartedTooLate (" DepsFromNB " ,0.0 ,5.0)];
35 // same eval clauses for " DepsFromCT ", and "16.0" rather than 0.0
36 // same eval clauses for " DepsFromLR ", and "24.0" rather than 0.0

Listing 1.4. The MultiQuaTEx expression generated by BusKer

is almost 900 lines long, as sketched in Listing 1.3. This is due to the the fact that the
journeys between bus stops are modelled using Erlang distributions with many phases,
and each phase is associated with a distinct species (hence at least a line in the source
code). More specifically, Listing 1.3 can be divided in four parts: lines 1–16 define the
rates with which the modelled prototypical bus moves, lines 17–36 define the processes
specifying the bus’s stochastic behaviour, lines 37–38 define the state observations of
interest, while lines 39–44 specify the initial configuration of the system. The third
section only depends on the number of considered bus stops, while, as depicted by the
ellipsis, the other ones also depend on the number of phases of the provided BusKer
specification.

The MultiQuaTEx expression generated by BusKer for our scenario is a fixed length
for any window of tolerance. It is sketched in Listing 1.4 for the Scottish window of tol-
erance. Overall it evaluates fifteen properties, i.e., P1–P5 for each of the three bus stops.
Lines 1–28 define the parametric recursive temporal operators which specify how to
compute such properties, whereas lines 29–36 list the fifteen properties to be estimated.
For each simulation, each temporal operator observes the bus stop provided as a parame-
ter, specifically: DepartedOnTime, DepartedTooEarly and DepartedTooLate return

North Bridge Cameron Toll Lasswade Road
P1 0.32 16.42 25.84
P2 0.32 1.28 2.13
P3 1.00 0.81 0.88
P4 0.00 0.19 0.04
P5 0.00 0.00 0.06

Table 2. Analysis results for the #31 bus operated by Lothian Buses in Edinburgh

1 if the bus departed on time, too early, or too late, respectively. DepartureTime returns
the departure time of the bus, while DistanceFromTimeTable returns the absolute
value of the difference between the actual departure time and the timetabled one. That
expression does not depend on the number of phases of the BusKer specification, but
only on the number of timetabled bus stops. In particular, the expression can be divided
in a static part, which is given once, for any possible input specification, and a dynamic
one, which instead depends on the input specification. Thanks to their parametrisation,
the temporal operators (lines 1–27) do not depend on the input specification, and are
thus the static part of the expression. Lines 28–35 are the dynamic part of the expres-
sion, as five eval clauses instantiated with the timetabled departures and the window
of tolerance are needed for each bus stop considered.

7 Analysis of the scenario

In this section we present the analysis of our scenario using TBA. The results for the
Scottish window of tolerance [14] are summarised in Table 2. We fixed a = 0.05 for
all properties, d = 0.2 for those regarding the expected departure times and deviations
from the timetable, and d = 0.05 for the probabilities. It was necessary to perform 1860
simulations to attain this confidence interval for all the 15 studied properties, requiring
less than 10 seconds in total, thus without requiring to resort to MultiVeStA’s capability
of distributing simulations.

These results suggest that buses tend to lose adherence with respect to the timetable
while performing the route. This effect is also observed in practice: the variance of
departure times is seen to increase along the route. However, this does not necessarily
correspond to a degradation of the quality of service, as a greater deviation from the
timetable generated by delayed departures may correspond to a better quality of service
than a smaller deviation generated by anticipated departures.

In order to have further insights into the quality of the studied #31 bus service,
the last three rows of Table 2 provide the probabilities that a bus departs on time, too
early, or too late from each bus stop. Consistent with the slight deviation found from the
timetable, we have that buses always depart on time from the North Bridge stop. Then,
buses tend to perform the route from North Bridge to Cameron Toll too quickly, causing
early departures in 20% of cases. The quality of service improves at Lasswade Road,
where only 12% of departures are outside the window of tolerance. This may seem to
contradict the results about the deviation from the timetable, as we found that at the

North Bridge Cameron Toll Lasswade Road
SC EN SC EN SC EN

P3 1.00 1.00 0.81 0.82 0.88 0.92
P4 0.00 0.00 0.19 0.18 0.04 0.05
P5 0.00 0.00 0.00 0.00 0.06 0.03

Table 3. The quality of the #31 bus service for the Scottish (SC) and English (EN) window of
tolerance.

Lasswade Roll time point there is a greater deviation from the timetable with respect
to that at Cameron Toll. However, this is explained by noticing that our analysis tells
us that the deviations from the timetable are mainly caused by anticipated departures
at Cameron Toll, and by delayed departures at Lasswade Road. In fact, we first of all
notice that the expected departure time is 0.42 minutes greater than the timetabled one
at Cameron Toll, and 1.84 at Lasswade Road.

Furthermore, we have early departures in 20% of cases and no late departures at
Cameron Toll. Instead, at Lasswade Road we have early departures in only 4% of cases,
and late departures in 6% of cases. In conclusion, we find that buses tend to spend more
time than is scheduled in performing the journey from Cameron Toll to Lasswade Road,
thus absorbing the effect of earlier departures from Cameron Toll, leading to a halved
percentage of departures there outside the window of tolerance with respect to Cameron
Toll.

It is worthwhile to note that analysing the quality of service with respect to other
windows of tolerance only requires launching the command (3) with different parame-
ters. For example, Table 3 compares the results using the Scottish window of tolerance
(SC), and the English one (EN), the latter obtained by setting parameters maxAdv=1 and
maxDelay=5.59. Not surprisingly, the table depicts a slightly better quality of service
for the same data when considering the looser English window of tolerance rather than
the stricter Scottish one.

8 Conclusions

In this paper we have presented an analysis pathway for the quantitative evaluation of
service-level agreements for public transportation systems. Although we discussed a
concrete application focussing on a specific bus route in a specific city, our approach is
more general and it can in principle be applied to other transportation systems publish-
ing timetabled departure times.

The methodology which we have proposed here requires the availability of the raw
data from a bus tracking system. At first sight, it might have seemed that the properties
of interest could have been calculated directly from measurement data. However, data
sets are necessarily incomplete and working from the data provides less coverage of the
full range of the system behaviour and hence delivers fewer insights than are obtained
when working with a stochastic process abstraction of the data.

In addition, only (automatically generated) models can assist service providers an
regulatory authorities in evaluating what-if scenarios, e.g., understanding the impact of

changes along a route on the offered quality of service. In this respect, the measurements
are crucial to calibrate the model with realistic parameters, which can be changed by the
modeller (by simply manipulating the compact BusKer specification) in order to study
how the properties would be affected. For instance, regulators could determine how
proposals to amend the notion of punctuality might impact on a provider’s capability to
satisfy the regulations on services.

As discussed, the model involves a single route only, hence the measurements already
incorporate effects of contention such as those due to multiple buses sharing the same
route, and multiple routes sharing segments of the road. Developing a model where
such effects are captured explicitly is an interesting line of future work, as is extending
our analysis pathway to such a scenario.

Acknowledgements This work is supported by the EU project QUANTICOL, 600708.
The Bio-PEPA Eclipse Plugin software can be obtained from www.biopepa.org. The
MultiVeStA statistical analysis tool is available from code.google.com/p/multivesta/.
The authors thank Allan Clark and Ludovica Luisa Vissat for the work in [7] which
provided the model parameters for the present paper. The authors thank the anonymous
reviewers for suggestions which helped us to improve the paper.

References
1. Lei Tang and Piyushimita (Vonu) Thakuriah. Ridership effects of real-time bus information

system: A case study in the city of Chicago. Transportation Research Part C: Emerging
Technologies, 22(0):146–161, 2012.

2. The City of Edinburgh Council. Bus Tracker Edinburgh real-time bus information website,
2014. http://www.mybustracker.co.uk.

3. Philipp Reinecke, Tilman Krauß, and Katinka Wolter. Phase-type fitting using HyperStar.
In Maria Simonetta Balsamo, William J. Knottenbelt, and Andrea Marin, editors, Computer
Performance Engineering - 10th European Workshop, EPEW 2013, Venice, Italy, September
16-17, 2013. Proceedings, volume 8168 of Lecture Notes in Computer Science, pages 164–
175. Springer, 2013.

4. Federica Ciocchetta and Jane Hillston. Bio-PEPA: A framework for the modelling and anal-
ysis of biological systems. Theoretical Computer Science, 410(33-34):3065–3084, 2009.

5. Stefano Sebastio and Andrea Vandin. MultiVeStA: Statistical model checking for discrete
event simulators. In 7th International Conference on Performance Evaluation Methodologies
and Tools, Torino, Italy, December 2013.

6. Adam Duguid, Stephen Gilmore, Maria Luisa Guerriero, Jane Hillston, and Laurence Loewe.
Design and development of software tools for Bio-PEPA. In Ann Dunkin, Ricki G. Ingalls,
Enver Yücesan, Manuel D. Rossetti, Ray Hill, and Björn Johansson, editors, Winter Simula-
tion Conference, pages 956–967. WSC, 2009.

7. Ludovica Luisa Vissat, Allan Clark, and Stephen Gilmore. Finding optimal timetables for
Edinburgh bus routes. In Proceedings of the Seventh International Workshop on Practical
Applications of Stochastic Modelling (PASM 2014), Newcastle, England, May 2014.

8. Peter Kemper and Carsten Tepper. Automated trace analysis of discrete-event system mod-
els. IEEE Trans. Software Eng., 35(2):195–208, 2009.

9. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-
time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Con-
ference on Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591.
Springer, 2011.

10. Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

11. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property spec-
ifications for finite-state verification. In Barry W. Boehm, David Garlan, and Jeff Kramer,
editors, ICSE, pages 411–420. ACM, 1999.

12. Simon Reed. Transport for London—Using tools, analytics and data to inform passengers.
Journeys, pages 96–104, September 2013.

13. Matthew Tranter. Department for Transport—annual bus statistics: England 2012/2013,
September 2013.

14. Smarter Scotland: Scottish Government. Bus Punctuality Improvement Partnerships (BPIP),
March 2009.

15. William J. Stewart. Probability, Markov Chains, Queues, and Simulation. Princeton Univer-
sity Press, 2009.

16. Mieke Massink, Diego Latella, Andrea Bracciali, and Jane Hillston. Modelling non-linear
crowd dynamics in Bio-PEPA. In Dimitra Giannakopoulou and Fernando Orejas, editors,
FASE, volume 6603 of Lecture Notes in Computer Science, pages 96–110. Springer, 2011.

17. Mieke Massink, Diego Latella, Andrea Bracciali, Michael D. Harrison, and Jane Hillston.
Scalable context-dependent analysis of emergency egress models. Formal Aspects of Com-
puting, 24(2):267–302, 2012.

18. Mieke Massink, Manuele Brambilla, Diego Latella, Marco Dorigo, and Mauro Birattari. On
the use of Bio-PEPA for modelling and analysing collective behaviours in swarm robotics.
Swarm Intelligence, 7(2-3):201–228, 2013.

19. Lenz Belzner, Rocco De Nicola, Andrea Vandin, and Martin Wirsing. Reasoning (on) ser-
vice component ensembles in rewriting logic. In Shusaku Iida, José Meseguer, and Kazuhiro
Ogata, editors, Specification, Algebra, and Software, volume 8373 of Lecture Notes in Com-
puter Science, pages 188–211. Springer, 2014.

20. Stefano Sebastio, Michele Amoretti, and Alberto Lluch-Lafuente. A computational field
framework for collaborative task execution in volunteer clouds. In Proceedings of the 9th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2014), 2014.

21. Danilo Pianini, Stefano Sebastio, and Andrea Vandin. Distributed statistical analysis of com-
plex systems modeled through a chemical metaphor. In 5th International Workshop on Mod-
eling and Simulation of Peer-to-Peer and Autonomic Systems (MOSPAS 2014), 2014.

22. Adnan Aziz, Vigyan Singhal, Felice Balarin, Robert Brayton, and Alberto L. Sangiovanni-
Vincentelli. It usually works: The temporal logic of stochastic systems. In Pierre Wolper,
editor, Computer Aided Verification, volume 939 of Lecture Notes in Computer Science,
pages 155–165. Springer Berlin Heidelberg, 1995.

23. Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Approximate symbolic model
checking of continuous-time Markov chains. In Jos C.M. Baeten and Sjouke Mauw, editors,
CONCUR’99 Concurrency Theory, volume 1664 of Lecture Notes in Computer Science,
pages 146–161. Springer Berlin Heidelberg, 1999.

24. Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
Asp. Comput., 6(5):512–535, 1994.

