Skip to main content

Reflectivity Properties of Graphene and Graphene-Coated Substrates

  • Conference paper
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 8638))

Included in the following conference series:

Abstract

The reflectivity properties of graphene and graphene-coated substrates, as prospective materials for nanocommunications, are calculated using the formalism of the polarization tensor. Simple analytic expressions for the transverse magnetic and transverse electric reflection coefficients are obtained at zero temperature and for sufficiently high frequencies at any temperature. The previously known results for the transverse magnetic case are reproduced. The transverse electric coefficients of graphene and graphene-coated plates are shown to depend on the angle of incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dresselhaus, M.S.: On the past and Present of Carbon Nanostructures. Phys. Status Solidi B 248, 1566–1574 (2011)

    Article  Google Scholar 

  2. Rutherglen, C., Burke, P.: Carbon Nanotube Radio. Nano Lett. 7, 3296–3299 (2007)

    Article  Google Scholar 

  3. Jensen, K., Weldon, J., Garcia, H., Zettl, A.: Nanotube Radio. Nano Lett. 7, 3508–3511 (2007)

    Article  Google Scholar 

  4. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The Electronic Properties of Graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  5. Katsnelson, M.I.: Graphene: Carbon in Two Dimensions. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  6. Falkovsky, L.A., Pershoguba, S.S.: Optical Far-Infrared Properties of a Graphene Monolayer and Multylayer. Phys. Rev. B 76, 153410-1–4 (2007)

    Google Scholar 

  7. Stauber, T., Peres, N.M.R., Geim, A.K.: Optical Conductivity of Graphene in the Visible Region of the Spectrum. Phys. Rev. B 78, 085432-1–8 (2008)

    Google Scholar 

  8. Sernelius, B.E.: Retarded Interactions in Graphene Systems. Phys. Rev. B 85, 195427-1–10 (2012)

    Google Scholar 

  9. Klimchitskaya, G.L., Mostepanenko, V.M., Sernelius, B.E.: Two Approaches for Describing the Casimir Interaction in Graphene: Density-Density Correlation Function Versus Polarization Tensor. Phys. Rev. B 89, 125407-1–9 (2014)

    Google Scholar 

  10. Bordag, M., Fialkovsky, I.V., Gitman, D.M., Vassilevich, D.V.: Casimir Interaction Between a Perfect Conductor and Graphene Described by the Dirac Model. Phys. Rev. B 80, 245406-1–5 (2009)

    Google Scholar 

  11. Fialkovsky, I.V., Marachevsky, V.N., Vassilevich, D.V.: Finite-Temperature Casimir Effect for Graphene. Phys. Rev. B 84, 035446-1–10 (2011)

    Google Scholar 

  12. Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Theory of Casimir Interaction from Graphene-Coated Substrates Using the Polarization Tensor and Comparison with Experiment. Phys. Rev. B 89, 115419-1–8 (2014)

    Google Scholar 

  13. Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Advances in the Casimir Effect. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  14. Banishev, A.A., Wen, H., Xu, J., Kawakami, R.K., Klimchitskaya, G.L., Mostepanenko, V.M., Mohideen, U.: Measuring the Casimir Force Gradient from Graphene on a SiO2 Substrate. Phys. Rev. B 87, 205433-1–5 (2013)

    Google Scholar 

  15. Klimchitskaya, G.L., Mostepanenko, V.M.: Observability of Thermal Effects in the Casimir Interaction from Graphene-Coated Substrates. Phys. Rev. A 89, 052512-1–7 (2014)

    Google Scholar 

  16. Chaichian, M., Klimchitskaya, G.L., Mostepanenko, V.M., Tureany, A.: Thermal Casimir-Polder Interaction of Different Atoms with Graphene. Phys. Rev. A 86, 012515-1–9 (2012)

    Google Scholar 

  17. Wunsch, B., Stauber, T., Sols, F., Guinea, F.: Dynamical Polarization of Graphene at Finite Doping. New J. Phys. 8, 318-1–16 (2006)

    Google Scholar 

  18. Peres, N.M.R., Guinea, F., Castro Neto, A.H.: Electronic Properties of Disordered Two-Dimensional Carbon. Phys. Rev. B 73, 125411-1–23 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Klimchitskaya, G.L., Mostepanenko, V.M., Petrov, V.M. (2014). Reflectivity Properties of Graphene and Graphene-Coated Substrates. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN 2014. Lecture Notes in Computer Science, vol 8638. Springer, Cham. https://doi.org/10.1007/978-3-319-10353-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10353-2_40

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10352-5

  • Online ISBN: 978-3-319-10353-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics