Skip to main content

Dynamic Logic Machine Learning for Cybersecurity

  • Chapter
  • First Online:
Cybersecurity Systems for Human Cognition Augmentation

Part of the book series: Advances in Information Security ((ADIS,volume 61))

Abstract

Today’s networks and their users are under attack from an ever-expanding universe of threats and malware. Malware are malicious software codes that typically damage or disable, take control of, or steal information from a computer system. Malware broadly includes botnets, viruses, worms, Trojan horses, logic bombs, rootkits, boot kits, backdoors, spyware, adware, and other types of threats. The ever increasing danger of the future threat is its ability to evolve for avoiding system defenses. Future threats will be using machine learning to outsmart the defenses. Defense techniques will in turn learn new attackers tricks to defend against. Therefore the future of cybersecurity is a warfare of machine learning techniques. The more capable machine learning technique will win.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aristotle. (1995). The complete works. The revised Oxford translation, ed. J. Barnes, Princeton, NJ: Princeton Univ. Press. (Original work IV BCE).

    Google Scholar 

  2. Bar, M., Kassam, K.S., Ghuman, A.S., Boshyan, J., Schmid, A.M., Dale, et al. (2006). Top-down facilitation of visual recognition. USA: Proceedings of the National Academy of Sciences, 103, 449-54.

    Google Scholar 

  3. Binder, J.R., Westbury, C.F., McKiernan, K.A., Possing, E.T., & Medler, D.A. (2005). Distinct Brain Systems for Processing Concrete and Abstract Concepts. Journal of Cognitive Neuroscience 17(6), 1–13.

    Article  Google Scholar 

  4. Blowers, M. and Williams, J. (2014). Machine Learning Applied to Cyber Operations. In Pino, R.E. (ed.) Network Science and Cybersecurity, Springer, New York, NY.

    Google Scholar 

  5. Cabanac, A., Perlovsky, L.I., Bonniot-Cabanac, M-C., Cabanac, M. (2013). Music and Academic Performance. Behavioural Brain Research, 256, 257-260.

    Article  Google Scholar 

  6. Cisco. (2013). Annual Security Report; https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2013_ASR.pdf

    Google Scholar 

  7. Dua, S. & Du, X. (2011). Data Mining and Machine Learning in Cybersecurity. Taylor & Francis, Boca Raton, FL.

    Book  MATH  Google Scholar 

  8. Fontanari, J.F. and Perlovsky, L.I. (2007). Evolving Compositionality in Evolutionary Language Games. IEEE Transactions on Evolutionary Computations, 11(6), pp. 758-769; doi:10.1109/TEVC.2007.892763

    Article  Google Scholar 

  9. Fontanari, J.F. & Perlovsky, L.I. (2008a). How language can help discrimination in the Neural Modeling Fields framework. Neural Networks, 21(2-3), 250–256.

    Article  Google Scholar 

  10. Gesher, A. (2013). Adaptive adversaries: building systems to fight fraud and cyber intruders. In Proceeding of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Pages 1136-1136, ACM New York, NY, US.

    Chapter  Google Scholar 

  11. Gödel, K. (2001). Collected Works, Volume I, Publications 1929–1936. Feferman, S., Dawson, J.W., Jr., Kleene, S.C., Eds.; Oxford University Press: New York, NY.

    Google Scholar 

  12. Grossberg, S. & Levine, D.S. (1987). Neural dynamics of attentionally modulated Pavlovian conditioning: blocking, inter-stimulus interval, and secondary reinforcement. Psychobiology, 15(3), pp.195-240.

    Google Scholar 

  13. Jones, J. Bradstreet, J., Kozak, M., Hughes, T., & Blount, M. (2004). Ground moving target tracking and exploitation performance measures. Pentagon Report A269234, approved for public release.

    Google Scholar 

  14. Kant, I. (1790/1914). Critique of Judgment, tr. J.H.Bernard, London: Macmillan & Co. Kant, 1798/1974.

    Google Scholar 

  15. Kosslyn, S.M. (1994). Image and Brain. Cambridge, MA: MIT Press.

    Google Scholar 

  16. Kovalerchuk, B., Perlovsky, L., & Wheeler, G. (2012). Modeling of Phenomena and Dynamic Logic of Phenomena. Journal of Applied Non-classical Logics, 22(1), 51-82. http://arxiv.org/abs/1012.5415

    Google Scholar 

  17. Kveraga, K., Boshyan, J., & M. Bar. (2007) Magnocellular projections as the trigger of top-down facilitation in recognition. Journal of Neuroscience, 27, 13232-13240.

    Article  Google Scholar 

  18. Masataka, N. & Perlovsky, L.I. (2012a). Music can reduce cognitive dissonance. Nature Precedings: hdl:10101/npre.2012.7080.1; http://precedings.nature.com/documents/7080/version/1

    Google Scholar 

  19. Masataka, N. & Perlovsky, L.I. (2012b). The efficacy of musical emotions provoked by Mozart’s music for the reconciliation of cognitive dissonance. Scientific Reports 2, Article number: 694 doi:10.1038/srep00694 http://www.nature.com/srep/2013/130619/srep02028/full/srep02028.html

  20. Masataka, N. & Perlovsky, L.I. (2013). Cognitive interference can be mitigated by consonant music and facilitated by dissonant music. Scientific Reports 3, Article number: 2028 (2013) doi:10.1038/srep02028; http://www.nature.com/srep/2013/130619/srep02028/full/srep02028.html

  21. Mugan, J. (2013). A developmental approach to learning causal models for cyber security. Proc. SPIE 8751, Machine Intelligence and Bio-inspired Computation: Theory and Applications VII, 87510A (May 28, 2013); doi:10.1117/12.2014418

    Google Scholar 

  22. Perlovsky, L.I. (1987). Multiple sensor fusion and neural networks. DARPA Neural Network Study, 1987.

    Google Scholar 

  23. Perlovsky, L.I. & McManus, M.M. (1991). Maximum Likelihood Neural Networks for Sensor Fusion and Adaptive Classification. Neural Networks 4 (1), 89-102.

    Article  Google Scholar 

  24. Perlovsky, L.I. (1996). Gödel Theorem and Semiotics. Proceedings of the Conference on Intelligent Systems and Semiotics’96. Gaithersburg, MD, v.2, pp. 14-18.

    Google Scholar 

  25. Perlovsky, L.I. (1998). Conundrum of Combinatorial Complexity. IEEE Trans. PAMI, 20(6) pp. 666-670.

    Article  Google Scholar 

  26. Perlovsky, L.I. (2000). Beauty and Mathematical Intellect. Zvezda, 2000(9), 190-201 (Russian)

    Google Scholar 

  27. Perlovsky, L.I. (2001a). Neural Networks and Intellect: using model-based concepts. Oxford University Press, New York, NY (3rd printing).

    Google Scholar 

  28. Perlovsky, L. I. (2001b). Mystery of sublime and mathematics of intelligence. Zvezda, 2001(8), 174-190, St. Petersburg.

    Google Scholar 

  29. Perlovsky, L.I. (2004). Integrating Language and Cognition. IEEE Connections, Feature Article, 2(2), 8-12.

    Google Scholar 

  30. Perlovsky, L.I. (2006a). Toward Physics of the Mind: Concepts, Emotions, Consciousness, and Symbols. Phys. Life Rev. 3(1), 22-55.

    Google Scholar 

  31. Perlovsky, L.I. (2006c). Music – The First Principle. Musical Theatre, http://www.ceo.spb.ru/libretto/kon_lan/ogl.shtml

  32. Perlovsky, L.I. (2007). Evolution of Languages, Consciousness, and Cultures. IEEE Computational Intelligence Magazine, 2(3), 25-39

    Article  Google Scholar 

  33. Perlovsky, L.I. (2008). Music and Consciousness, Leonardo, Journal of Arts, Sciences and Technology, 41(4), pp.420-421.

    Google Scholar 

  34. Perlovsky, L.I. (2009a). Language and Cognition. Neural Networks, 22(3), 247-257. doi:10.1016/j.neunet.2009.03.007.

    Article  Google Scholar 

  35. Perlovsky, L.I. (2009b). Language and Emotions: Emotional Sapir-Whorf Hypothesis. Neural Networks, 22(5-6); 518-526. doi:10.1016/j.neunet.2009.06.034

    Article  Google Scholar 

  36. Perlovsky, L.I. (2009c). ‘Vague-to-Crisp’ Neural Mechanism of Perception. IEEE Trans. Neural Networks, 20(8), 1363-1367.

    Article  Google Scholar 

  37. Perlovsky, L.I. (2010a). Intersections of Mathematical, Cognitive, and Aesthetic Theories of Mind, Psychology of Aesthetics, Creativity, and the Arts, 4(1), 11-17. doi: 10.1037/a0018147.

    Article  Google Scholar 

  38. Perlovsky L.I. (2010b). Physics of The Mind: Concepts, Emotions, Language, Cognition, Consciousness, Beauty, Music, and Symbolic Culture. WebmedCentral PSYCHOLOGY 2010;1(12):WMC001374; http://arxiv.org/abs/1012.3803

  39. Perlovsky, L.I. (2010c). Joint Acquisition of Language and Cognition; WebmedCentral BRAIN;1(10):WMC00994; http://www.webmedcentral.com/article_view/994

  40. Perlovsky, L.I. (2010d). Musical emotions: Functions, origin, evolution. Physics of Life Reviews, 7(1), 2-27. doi:10.1016/j.plrev.2009.11.001

    Article  Google Scholar 

  41. Perlovsky, L.I. (2012a). Cognitive function, origin, and evolution of musical emotions. Musicae Scientiae, 16(2), 185 – 199; doi: 10.1177/1029864912448327.

    Article  Google Scholar 

  42. Perlovsky, L.I. (2012b). Cognitive Function of Music, Part I. Interdisciplinary Science Reviews, 37(2), 129–42.

    Article  Google Scholar 

  43. Perlovsky, L.I. (2012c). Emotionality of Languages Affects Evolution of Cultures. Review of Psychology Frontier, 1(3), 1-13. http://www.academicpub.org/rpf/paperInfo.aspx?ID=31

  44. Perlovsky, L.I. (2013a). A challenge to human evolution – cognitive dissonance. Front. Psychol. 4:179. doi: 10.3389/fpsyg.2013.00179; http://www.frontiersin.org/cognitive_science/10.3389/fpsyg.2013.00179/full

  45. Perlovsky, L.I. (2013b). Learning in brain and machine - complexity, Gödel, Aristotle. Frontiers in Neurorobotics; doi: 10.3389/fnbot.2013.00023; http://www.frontiersin.org/Neurorobotics/10.3389/fnbot.2013.00023/full

  46. Perlovsky, L.I. (2013c). Cognitive Function of Music, Part II. Interdisciplinary Science Reviews, 38(2), 149-173.

    Article  Google Scholar 

  47. Perlovsky, L.I. (2013d). Language and cognition – joint acquisition, dual hierarchy, and emotional prosody. Frontiers in Behavioral Neuroscience, 7:123; doi:10.3389/fnbeh.2013.00123; http://www.frontiersin.org/Behavioral_Neuroscience/10.3389/fnbeh.2013.00123/full

  48. Perlovsky, L.I., Deming R.W., & Ilin, R. (2011). Emotional Cognitive Neural Algorithms with Engineering Applications. Dynamic Logic: from vague to crisp. Springer, Heidelberg, Germany.

    Book  Google Scholar 

  49. Perlovsky, L. I., Bonniot-Cabanac, M.-C., Cabanac, M. (2010). Curiosity and Pleasure. WebmedCentral PSYCHOLOGY 2010;1(12):WMC001275; http://www.webmedcentral.com/ article_view/1275; http://arxiv.org/ftp/arxiv/papers/1010/1010.3009.pdf

  50. Perlovsky, L.I., Cabanac, A., Bonniot-Cabanac, M-C., & Cabanac, M. (2013). Mozart Effect, Cognitive Dissonance, and the Pleasure of Music. ArXiv 1209.4017; Behavioural Brain Research, 244, 9-14.

    Article  Google Scholar 

  51. Perlovsky, L.I. & Ilin, R. (2010). Neurally and Mathematically Motivated Architecture for Language and Thought. Special Issue “Brain and Language Architectures: Where We are Now?” The Open Neuroimaging Journal, 4, 70-80.http://www.bentham.org/open/tonij/openaccess2.htm

  52. Price, C.J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816–847.

    Article  Google Scholar 

  53. Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., & Elovici, Y. (2012). Detecting unknown malicious code by applying classification techniques on OpCode patterns, Security Informatics, 1:1; http://www.security-informatics.com/content/1/1/1.

  54. Singer, R.A., Sea, R.G. & Housewright, R.B. (1974). Derivation and Evaluation of Improved Tracking Filters for Use in Dense Multitarget Environments, IEEE Transactions on Information Theory, IT-20, 423-432.

    Article  Google Scholar 

  55. Tikhanoff. V., Fontanari, J. F., Cangelosi, A. & Perlovsky, L. I. (2006). Language and cognition integration through modeling field theory: category formation for symbol grounding. In Book Series in Computer Science, v. 4131, Heidelberg: Springer.

    Google Scholar 

  56. Vityaev, E.E., Perlovsky, L.I., Kovalerchuk, B.Y., Speransky, S.O. (2011). Probabilistic dynamic logic of the mind and cognition, Neuroinformatics, 5(1), 1-20.

    Google Scholar 

  57. Vityaev, E.E., Perlovsky, L.I., Kovalerchuk, B. Y., & Speransky, S.O. (2013). Probabilistic dynamic logic of cognition. Invited Article. Biologically Inspired Cognitive Architectures 6, 159-168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Perlovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perlovsky, L., Shevchenko, O. (2014). Dynamic Logic Machine Learning for Cybersecurity. In: Pino, R., Kott, A., Shevenell, M. (eds) Cybersecurity Systems for Human Cognition Augmentation. Advances in Information Security, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-10374-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10374-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10373-0

  • Online ISBN: 978-3-319-10374-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics