Abstract
In this chapter we present the continuation of our research into prediction from a data stream of real estate sales transactions using ensembles of regression models. The method consists in building models over the chunks of a data stream determined by a sliding time window and incrementally expanding an ensemble by systematically generated models in the course of time. The aged models are utilized to compose ensembles and their output is updated with trend functions reflecting the changes of prices in the market. In the study reported we attempted to incorporate self-adapting techniques into genetic fuzzy systems aimed to construct base models for property valuation. Six self-adapting genetic algorithms with varying mutation, crossover, and selection were developed and tested using real-world datasets. The analysis of experimental results was made employing non-parametric statistical techniques devised for multiple N×N comparisons.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gaber, M.M.: Advances in data stream mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(1), 79–85 (2012)
Tsymbal, A.: The problem of concept drift: Definitions and related work. Technical Report. Department of Computer Science, Trinity College, Dublin (2004)
Sobolewski, P., Woźniak, M.: Concept Drift Detection and Model Selection with Simulated Recurrence and Ensembles of Statistical Detectors. Journal for Universal Computer Science 19(4), 462–483 (2013)
Brzeziński, D., Stefanowski, J.: Reacting to Different Types of Concept Drift: The Accuracy Updated Ensemble Algorithm. IEEE Transactions on Neural Networks and Learning Systems 25(1), 81–94 (2014)
Kuncheva, L.I.: Classifier ensembles for changing environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004)
Minku, L.L., White, A.P., Yao, X.: The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift. IEEE Transactions on Knowledge and Data Engineering 22(5), 730–742 (2010)
Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of Mamdani and TSK Fuzzy Models for Real Estate Appraisal. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007/ WIRN 2007, Part III. LNCS (LNAI), vol. 4694, pp. 1008–1015. Springer, Heidelberg (2007)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of Bagging Ensembles Comprising Genetic Fuzzy Models to Assist with Real Estate Appraisals. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: A Multi-agent System to Assist with Real Estate Appraisals Using Bagging Ensembles. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 813–824. Springer, Heidelberg (2009)
Graczyk, M., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of Bagging, Boosting and Stacking Ensembles Applied to Real Estate Appraisal. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS (LNAI), vol. 5991, pp. 340–350. Springer, Heidelberg (2010)
Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of Bagging Ensembles of Fuzzy Models for Premises Valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS (LNAI), vol. 5991, pp. 330–339. Springer, Heidelberg (2010)
Kempa, O., Lasota, T., Telec, Z., Trawiński, B.: Investigation of bagging ensembles of genetic neural networks and fuzzy systems for real estate appraisal. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS (LNAI), vol. 6592, pp. 323–332. Springer, Heidelberg (2011)
Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical Comparison of Resampling Methods Using Genetic Fuzzy Systems for a Regression Problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing 17(2-3), 229–253 (2011)
Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 5123–5142 (2011)
Trawiński, B., Lasota, T., Smętek, M., Trawiński, G.: An Analysis of Change Trends by Predicting from a Data Stream Using Genetic Fuzzy Systems. In: Nguyen, N.-T., Hoang, K., Jędrzejowicz, P. (eds.) ICCCI 2012, Part I. LNCS (LNAI), vol. 7653, pp. 220–229. Springer, Heidelberg (2012)
Trawiński, B., Lasota, T., Smętek, M., Trawiński, G.: Weighting Component Models by Predicting from Data Streams Using Ensembles of Genetic Fuzzy Systems. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS (LNAI), vol. 8132, pp. 567–578. Springer, Heidelberg (2013)
Trawiński, B., Smętek, M., Lasota, T., Trawiński, G.: Evaluation of Fuzzy System Ensemble Approach to Predict from a Data Stream. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014, Part II. LNCS (LNAI), vol. 8398, pp. 137–146. Springer, Heidelberg (2014)
Smętek, M., Trawiński, B.: Investigation of Genetic Algorithms with Self-adaptive Crossover, Mutation, and Selection. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS (LNAI), vol. 6678, pp. 116–123. Springer, Heidelberg (2011)
Smętek, M., Trawiński, B.: Investigation of Self-adapting Genetic Algorithms using Some Multimodal Benchmark Functions. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 213–223. Springer, Heidelberg (2011)
Maruo, M.H., Lopes, H.S., Delgado, M.R.: Self-Adapting Evolutionary Parameters Encoding Aspects for Combinatorial Optimization Problems. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 154–165. Springer, Heidelberg (2005)
Smętek, M., Trawiński, B.: Selection of Heterogeneous Fuzzy Model Ensembles Using Self-adaptive Genetic Algorithms. New Generation Computing 29(3), 309–327 (2011)
Trawiński, B.: Evolutionary Fuzzy System Ensemble Approach to Model Real Estate Market based on Data Stream Exploration. Journal of Universal Computer Science 19(4), 539–562 (2013)
Cordón, O., Herrera, F.: A Two-Stage Evolutionary Process for Designing TSK Fuzzy Rule-Based Systems. IEEE Tr. on Sys., Man and Cyber., Part B 29(6), 703–715 (1999)
Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of evolutionary optimization methods of TSK fuzzy model for real estate appraisal. International Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)
García, S., Herrera, F.: An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)
Trawiński, B., Smętek, M., Telec, Z., Lasota, T.: Nonparametric Statistical Analysis for Multiple Comparison of Machine Learning Regression Algorithms. International Journal of Applied Mathematics and Computer Science 22(4), 867–881 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lasota, T., Smętek, M., Trawiński, B., Trawiński, G. (2015). An Attempt to Use Self-Adapting Genetic Algorithms to Optimize Fuzzy Systems for Predicting from a Data Stream. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds) New Research in Multimedia and Internet Systems. Advances in Intelligent Systems and Computing, vol 314. Springer, Cham. https://doi.org/10.1007/978-3-319-10383-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-10383-9_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10382-2
Online ISBN: 978-3-319-10383-9
eBook Packages: EngineeringEngineering (R0)