Skip to main content

An Attempt to Use Self-Adapting Genetic Algorithms to Optimize Fuzzy Systems for Predicting from a Data Stream

  • Conference paper
New Research in Multimedia and Internet Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 314))

  • 629 Accesses

Abstract

In this chapter we present the continuation of our research into prediction from a data stream of real estate sales transactions using ensembles of regression models. The method consists in building models over the chunks of a data stream determined by a sliding time window and incrementally expanding an ensemble by systematically generated models in the course of time. The aged models are utilized to compose ensembles and their output is updated with trend functions reflecting the changes of prices in the market. In the study reported we attempted to incorporate self-adapting techniques into genetic fuzzy systems aimed to construct base models for property valuation. Six self-adapting genetic algorithms with varying mutation, crossover, and selection were developed and tested using real-world datasets. The analysis of experimental results was made employing non-parametric statistical techniques devised for multiple N×N comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gaber, M.M.: Advances in data stream mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(1), 79–85 (2012)

    Google Scholar 

  2. Tsymbal, A.: The problem of concept drift: Definitions and related work. Technical Report. Department of Computer Science, Trinity College, Dublin (2004)

    Google Scholar 

  3. Sobolewski, P., Woźniak, M.: Concept Drift Detection and Model Selection with Simulated Recurrence and Ensembles of Statistical Detectors. Journal for Universal Computer Science 19(4), 462–483 (2013)

    Google Scholar 

  4. Brzeziński, D., Stefanowski, J.: Reacting to Different Types of Concept Drift: The Accuracy Updated Ensemble Algorithm. IEEE Transactions on Neural Networks and Learning Systems 25(1), 81–94 (2014)

    Article  Google Scholar 

  5. Kuncheva, L.I.: Classifier ensembles for changing environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Minku, L.L., White, A.P., Yao, X.: The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift. IEEE Transactions on Knowledge and Data Engineering 22(5), 730–742 (2010)

    Article  Google Scholar 

  7. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of Mamdani and TSK Fuzzy Models for Real Estate Appraisal. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007/ WIRN 2007, Part III. LNCS (LNAI), vol. 4694, pp. 1008–1015. Springer, Heidelberg (2007)

    Google Scholar 

  8. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of Bagging Ensembles Comprising Genetic Fuzzy Models to Assist with Real Estate Appraisals. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: A Multi-agent System to Assist with Real Estate Appraisals Using Bagging Ensembles. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 813–824. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Graczyk, M., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of Bagging, Boosting and Stacking Ensembles Applied to Real Estate Appraisal. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS (LNAI), vol. 5991, pp. 340–350. Springer, Heidelberg (2010)

    Google Scholar 

  11. Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of Bagging Ensembles of Fuzzy Models for Premises Valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS (LNAI), vol. 5991, pp. 330–339. Springer, Heidelberg (2010)

    Google Scholar 

  12. Kempa, O., Lasota, T., Telec, Z., Trawiński, B.: Investigation of bagging ensembles of genetic neural networks and fuzzy systems for real estate appraisal. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS (LNAI), vol. 6592, pp. 323–332. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical Comparison of Resampling Methods Using Genetic Fuzzy Systems for a Regression Problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing 17(2-3), 229–253 (2011)

    Google Scholar 

  15. Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 5123–5142 (2011)

    Article  Google Scholar 

  16. Trawiński, B., Lasota, T., Smętek, M., Trawiński, G.: An Analysis of Change Trends by Predicting from a Data Stream Using Genetic Fuzzy Systems. In: Nguyen, N.-T., Hoang, K., Jędrzejowicz, P. (eds.) ICCCI 2012, Part I. LNCS (LNAI), vol. 7653, pp. 220–229. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Trawiński, B., Lasota, T., Smętek, M., Trawiński, G.: Weighting Component Models by Predicting from Data Streams Using Ensembles of Genetic Fuzzy Systems. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS (LNAI), vol. 8132, pp. 567–578. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Trawiński, B., Smętek, M., Lasota, T., Trawiński, G.: Evaluation of Fuzzy System Ensemble Approach to Predict from a Data Stream. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014, Part II. LNCS (LNAI), vol. 8398, pp. 137–146. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Smętek, M., Trawiński, B.: Investigation of Genetic Algorithms with Self-adaptive Crossover, Mutation, and Selection. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS (LNAI), vol. 6678, pp. 116–123. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Smętek, M., Trawiński, B.: Investigation of Self-adapting Genetic Algorithms using Some Multimodal Benchmark Functions. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 213–223. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Maruo, M.H., Lopes, H.S., Delgado, M.R.: Self-Adapting Evolutionary Parameters Encoding Aspects for Combinatorial Optimization Problems. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 154–165. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Smętek, M., Trawiński, B.: Selection of Heterogeneous Fuzzy Model Ensembles Using Self-adaptive Genetic Algorithms. New Generation Computing 29(3), 309–327 (2011)

    Article  Google Scholar 

  23. Trawiński, B.: Evolutionary Fuzzy System Ensemble Approach to Model Real Estate Market based on Data Stream Exploration. Journal of Universal Computer Science 19(4), 539–562 (2013)

    Google Scholar 

  24. Cordón, O., Herrera, F.: A Two-Stage Evolutionary Process for Designing TSK Fuzzy Rule-Based Systems. IEEE Tr. on Sys., Man and Cyber., Part B 29(6), 703–715 (1999)

    Article  Google Scholar 

  25. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of evolutionary optimization methods of TSK fuzzy model for real estate appraisal. International Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008)

    MATH  Google Scholar 

  26. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  Google Scholar 

  27. García, S., Herrera, F.: An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)

    MATH  Google Scholar 

  28. Trawiński, B., Smętek, M., Telec, Z., Lasota, T.: Nonparametric Statistical Analysis for Multiple Comparison of Machine Learning Regression Algorithms. International Journal of Applied Mathematics and Computer Science 22(4), 867–881 (2012)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Lasota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lasota, T., Smętek, M., Trawiński, B., Trawiński, G. (2015). An Attempt to Use Self-Adapting Genetic Algorithms to Optimize Fuzzy Systems for Predicting from a Data Stream. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds) New Research in Multimedia and Internet Systems. Advances in Intelligent Systems and Computing, vol 314. Springer, Cham. https://doi.org/10.1007/978-3-319-10383-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10383-9_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10382-2

  • Online ISBN: 978-3-319-10383-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics