Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 569))

  • 912 Accesses

Abstract

Today, the problem that invasive alien species threaten the local species is seriously happening on this planet. This happening will lost the biodiversity of the world. Therefore, in this paper, we propose an approach to identify and exterminate a specialized invasive alien fish species, the black bass. We combined the boosting method and statical texture analysis method for this destination. AdaBoost is used for fish detection, and the co-occurrence matrix is used for specified species identification. We catch the body texture pattern after finding the fish-like creature, and make a judgement based on several statistical evaluation parameter comes from co-occurrence matrix. Simulation result shows a reasonable possibility for identify a black bass from other fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 18.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Darrell, T., Gordon, G., Harville, M., Woodfill, J.: Integrated Person Traching Using Stereo, Color, and Pattern Detection. Int’l J. Computer Vision 37(2), 175–185 (2000)

    Article  MATH  Google Scholar 

  2. Govindaraju, V.: Locating Human Faces in Photographs. Int’l J. Computer Vision 19(2), 129–146 (1996)

    Article  MathSciNet  Google Scholar 

  3. Govindaraju, V., Sher, D.B., Srihari, R.K., Srihari, S.N.: Locating Human Faces in Newspaper Photographs. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 549–554 (1989)

    Google Scholar 

  4. Govindaraju, V., Srihari, S.N., Sher, D.B.: A Computational Model for Face Location. In: Proc. Third IEEE Int’l Conf. Computer Vision, pp. 718–721 (1990)

    Google Scholar 

  5. Rahman, A., Rahman, M.N.A., Safar, S., Kamruddin, N.: Human Face Recognition: An Eigenfaces Approach. In: International Conference on Advances in Intelligent Systems in Bioinformatics. Atlantis Press (2013)

    Google Scholar 

  6. Shakhnarovich, G., Moghaddam, B.: Face recognition in subspaces. In: Handbook of Face Recognition, pp. 19–49. Springer, London (2011)

    Chapter  Google Scholar 

  7. Kothari, A., Bandagar, S.M.: Performance and evaluation of face recognition algorithms. World Journal of Science and Technology 1(12) (2012)

    Google Scholar 

  8. Roth, M.: Peter and W. Martin, Survey of appearance-based methods for object recognition. Inst. for Computer Graphics and Vision, Graz University of Technology, Austria. Technical Report ICGTR0108, ICG-TR-01/08 (2008)

    Google Scholar 

  9. Kim, T.K., Jose, K., Roberto, C.: Discriminative learning and recognition of image set classes using canonical correlations. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 1005–1018 (2007)

    Article  Google Scholar 

  10. Krizhevsky, A., Ilya, S., Geoffrey, E.H.: Image Net Classification with Deep Convolutional Neural Networks. In: NIPS, vol. 1(2) (2012)

    Google Scholar 

  11. Er, M.J., Chen, W., Wu, S.: High-speed face recognition based on discrete cosine transform and RBF neural networks. IEEE Transactions on Neural Networks 16(3), 679–691 (2005)

    Article  Google Scholar 

  12. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  13. Maldonado-Bascon, S., Lafuente-Arroyo, S., Gil-Jimenez, P., Gomez-Moreno, H., Lopez-Ferreras, F.: Road-sign detection and recognition based on support vector machines. IEEE Transactions on Intelligent Transportation Systems 8(2), 264–278 (2007)

    Article  Google Scholar 

  14. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  15. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  16. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  17. Nguyen, N.T., Hung, P.D.Q., Venkatesh, S., Bui, H.: Learning and detecting activities from movement trajectories using the hierarchical hidden Markov model. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 955–960 (2005)

    Google Scholar 

  18. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 994–1000 (2005)

    Google Scholar 

  19. Laptev, I.: Improvements of Object Detection Using Boosted Histograms. In: BMVC, vol. 6, pp. 949–958 (2006)

    Google Scholar 

  20. Zujovic, J., Pappas, T.N., Neuhoff, D.L.: Structural similarity metrics for texture analysis and retrieval. In: IEEE International Conference on Image Processing (ICIP), pp. 2225–2228 (2009)

    Google Scholar 

  21. Jafari-Khouzani, K., Soltanian-Zadeh, H.: Rotation-invariant multiresolution texture analysis using Radon and wavelet transforms. IEEE Transactions on Image Processing 14(6), 783–795 (2005)

    Article  MathSciNet  Google Scholar 

  22. Liu, G.H., Yang, J.Y.: Image retrieval based on the texton co-occurrence matrix. Pattern Recognition 41(12), 3521–3527 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, L., Yamawaki, A., Serikawa, S. (2015). Identify a Specified Fish Species by the Co-occurrence Matrix and AdaBoost. In: Lee, R. (eds) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Studies in Computational Intelligence, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-319-10389-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10389-1_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10388-4

  • Online ISBN: 978-3-319-10389-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics