Skip to main content

Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism Problem

  • Conference paper
Principles and Practice of Constraint Programming (CP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8656))

Abstract

This paper presents an original filtering approach, called SND (Scoring-based Neighborhood Dominance), for the subgraph isomorphism problem. By reasoning on vertex dominance properties based on various scoring and neighborhood functions, SND appears to be a filtering mechanism of strong inference potential. For example, the recently proposed method LAD is a particular case of SND. We study a specialization of SND by considering the number of k-length paths in graphs and three ways of relating sets of vertices. With this specialization, we prove that SND is stronger than LAD and incomparable to SAC (Singleton Arc Consistency). Our experimental results show that SND achieves most of the time the same filtering performances as SAC (while being several orders of magnitude faster), which allows one to find subisomorphism functions far more efficiently than MAC, while slightly outperforming LAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bessiere, C., Cardon, S., Debruyne, R., Lecoutre, C.: Efficient algorithms for singleton arc consistency. Constraints 16(1), 25–53 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bunke, H.: Recent developments in graph matching. In: Proceeding of ICPR 2000, vol. 2, pp. 117–124 (2000)

    Google Scholar 

  3. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)

    Article  Google Scholar 

  4. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the VF graph matching algorithm. In: Proceedings of ICIAP 1999, pp. 1172–1177 (1999)

    Google Scholar 

  5. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis & Machine Intelligence 26(10), 1367–1372 (2004)

    Article  Google Scholar 

  6. Corneil, D.G., Gotlieb, C.C.: An efficient algorithm for graph isomorphism. Journal of the ACM 17(1), 51–64 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  7. Damiand, G., Solnon, C., de la Higuera, C., Janodet, J.-C., Samuel, E.: Polynomial algorithms for subisomorphism of nD open combinatorial maps. Computer Vision and Image Understanding 115(7), 996–1010 (2011)

    Article  Google Scholar 

  8. de la Higuera, C., Janodet, J.-C., Samuel, E., Damiand, G., Solnon, C.: Polynomial algorithms for open plane graph and subgraph isomorphisms. Theoretical Computer Science 498, 76–99 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Debruyne, R., Bessiere, C.: Some practical filtering techniques for the constraint satisfaction problem. In: Proceedings of IJCAI 1997, pp. 412–417 (1997)

    Google Scholar 

  10. Debruyne, R., Bessiere, C.: Domain filtering consistencies. Journal of Artificial Intelligence Research 14, 205–230 (2001)

    MATH  MathSciNet  Google Scholar 

  11. Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing. ACM Press (1993)

    Google Scholar 

  12. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern matching. Mathematical Structures in Computer Science 12(4), 403–422 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lecoutre, C.: Constraint networks: techniques and algorithms. ISTE/Wiley (2009)

    Google Scholar 

  14. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences 25(1) (1982)

    Google Scholar 

  15. McGregor, J.J.: Relational consistency algorithms and their application in finding subgraph and graph isomorphisms. Information Sciences 19, 229–250 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ndiaye, S.N., Solnon, C.: CP models for maximum common subgraph problems. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 637–644. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Porumbel, D.C.: Isomorphism testing via polynomial-time graph extensions. Journal of Mathematical Modelling and Algorithms 10(2), 119–143 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of AAAI 1994, pp. 362–367 (1994)

    Google Scholar 

  19. Régin, J.C.: Développement d’outils algorithmiques pour l’intelligance artificielle. Application à la chimie organique. PhD thesis, Université Montpellier II (1995)

    Google Scholar 

  20. De Santo, M., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its use for benchmarking graph isomorphism algorithms. Pattern Recognition Letters 24(8), 1067–1079 (2003)

    Article  MATH  Google Scholar 

  21. Shervashidze, N., Schweitzer, P., Jan van Leeuwen, E., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 12, 2539–2561 (2011)

    MATH  Google Scholar 

  22. Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artificial Intelligence 174(12-13), 850–864 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM 23(1), 31–42 (1976)

    Article  MathSciNet  Google Scholar 

  24. Weisfeiler, B., Lehman, A.: A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia 2(9) (1968)

    Google Scholar 

  25. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: Proceedings of STOC 2012, pp. 887–898 (2012)

    Google Scholar 

  26. Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with constraint programming. Constraints 15(3), 327–353 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Audemard, G., Lecoutre, C., Samy-Modeliar, M., Goncalves, G., Porumbel, D. (2014). Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism Problem. In: O’Sullivan, B. (eds) Principles and Practice of Constraint Programming. CP 2014. Lecture Notes in Computer Science, vol 8656. Springer, Cham. https://doi.org/10.1007/978-3-319-10428-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10428-7_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10427-0

  • Online ISBN: 978-3-319-10428-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics