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Abstract. We present an active learning algorithm for inferring ex-
tended finite state machines (EFSM)s, combining data flow and control
behavior. Key to our learning technique is a novel learning model based
on so-called tree queries. The learning algorithm uses the tree queries to
infer symbolic data constraints on parameters, e.g., sequence numbers,
time stamps, identifiers, or even simple arithmetic. We describe sufficient
conditions for the properties that the symbolic constraints provided by a
tree query in general must have to be usable in our learning model. We
have evaluated our algorithm in a black-box scenario, where tree queries
are realized through (black-box) testing. Our case studies include con-
nection establishment in TCP and a priority queue from the Java Class
Library.

1 Introduction

Behavioral models of components and interfaces are the basis for many powerful
software development and verification techniques, such as model checking, model
based test generation, controller synthesis, and service composition. Ideally, such
models should be part of documentation (e.g., of a component library), but
in practice they are often nonexistent or outdated. To address this problem,
techniques for automatically generating models of component behavior are being
developed. These techniques can be based on static analysis, dynamic analysis,
or a combination of both approaches. Static analysis of a component requires
access to its source code; so when source code is not available, or when models
must be generated on the fly, dynamic analysis is a better alternative.

In dynamic analysis, test executions are used to drive and observe compo-
nent behavior. Mature techniques for generating finite-state models, describing
the possible orderings of interactions between a component and its environment,
have been developed to support, e.g., interface modeling [4], test generation [27],
and security analysis [23]. However, faithful models should capture not only the
ordering between interactions (control flow aspects), but also the constraints
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on any data parameters passed with these interactions (data flow aspects). Data
flow aspects are commonly captured by extending finite state machines with vari-
ables. Together with the data parameters passed with interactions, the variables
influence the control flow by means of guards, and the control flow can cause
updates of variables. Different dialects of extended finite state machines (EF-
SMs) are successfully used in tools for model-based testing [18], software model
checking [19], and model-based development [11]. However, dynamic analysis
techniques that generate EFSM models with guards and assignments to vari-
ables are still lacking: existing techniques either handle only a limited range of
operations on data (typically only equality [16,15]), require significant manual
effort [2], or rely on access to source code.

In this paper, we present a black-box technique for generating register au-
tomata (RAs), which are a particular form of EFSMs in which transitions are
equipped with guards and assignments to variables (called registers). Our contri-
bution is an active automata learning algorithm for RAs, which is parameterized
on a particular theory, i.e., a set of operations and tests on the data domain that
can be used in guards. By an appropriate choice of theory, we can infer RA
models where data parameters and variables represent sequence numbers, time
stamps, numbers with limited arithmetic, identifiers, etc.

Our algorithm has been evaluated in a black-box scenario, using SMT-based
test generation for realizing tree queries for integers with addition (4), equal-
ities (=), and inequalities (<,>). We have learned models of the connection
establishment in TCP and the priority queue from the Java Class Library.

Illustrating example. We give an example of an RA that can be generated
using our technique. We begin by describing the language that it recognizes.
Consider a simplistic sliding window protocol without retransmission, with a
window of size two, in which the receipt of messages must be acknowledged in
order. The protocol is described as a data language L., over messages of form
msg(d) and ack(d), where d ranges over natural numbers. A sequence of mes-
sages 0 = msg(dy) . ..ack(d,,) is in the language L, if (i) o has equally many
msg and ack messages, (i) the data parameter d in each msg(d)-message must
be one more than the data parameter of the previous msg-message. (iii) the
data parameter d in each ack(d)-message must be one more than the data pa-
rameter of the previous ack-message. (iv) whenever msg(d) immediately pre-
cedes ack(d’), then d — 1 < d’ < d. Sequences msg(1)ack(1)msg(2)ack(2) and
msg(1)msg(2)ack(1)ack(2) are examples of data words in L.,

Fig. 1 shows a register automaton that accepts Ls¢q. Locations are annotated
with registers. Accepting locations are denoted by double circles; [ is the initial
location. Transitions are denoted by arrows and labeled with a message, a guard
over parameters of the message and registers of the automaton, and an assign-
ment to these registers. A sink location and its adjacent transitions are omitted
in the figure. The automaton processes sequences o by first moving from [y to
l1 and storing the data value of the initial msg in x;. It then moves between
locations [ (waiting for an ack), I (waiting for two acks), and I3 (accepting).
Lseq is used as a running example throughout the paper.
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Fig. 1: A simple sliding window protocol with sequence numbers.

Main ideas. In classic active learning for finite automata (e.g., L* [5]), each
location of an inferred automaton is identified by a word that reaches it from the
initial location. Two words lead to the same location if they behave the same
when prepended to the same suffix (i.e., both are accepted or both rejected).
Similarly, each location in the RAs we infer is identified by a data word. To
determine whether two data words represent the same location, it is, however,
not sufficient to check whether they behave the same when prepended to the
same suffix, since we want to model relations between data parameters and not
concrete data values. For example, when learning Lg.q, we might wrongly de-
duce that msg(3) and msg(1) represent different locations, by observing that
msg(3)ack(3) € Lseq but msg(1)ack(3) ¢ Lgeq. To remedy this, we have gener-
alized the L* algorithm to the symbolic setting.

We describe our learning framework as a game between a learner and a
teacher: the learner has to infer an automaton model of an unknown target
language by making queries to a teacher who knows it. The concept of a teacher
is an abstraction that helps us separate different concerns; the concrete learning
framework is defined by the types of queries that the teacher can answer, and
the class of languages that can be learned.

Teacher. In our framework, the Teacher answers equivalence queries and tree
queries. The answer to an equivalence query tells us if a conjectured automaton
is correct, i.e., it accepts the unknown language. If not, the teacher provides a
counterexample, i.e., a data word that is in the language but not accepted by
the conjectured automaton, or vice versa. In practice, counterexamples can be
provided by, e.g., conformance testing or monitoring.

A tree query consists of a concrete prefix (e.g., a sequence of messages where
data parameters are instantiated with concrete data values) and a symbolic suf-
fix. Symbolic suffixes are obtained from concrete suffixes by replacing data values
by symbolic parameters (e.g., ack(p)). The answer to a tree query is a symbolic
decision tree (SDT), which describes which instantiations of the symbolic suffix
are accepted and which are rejected. Fig. 2 shows examples of SDTs for Lg,.
We depict trees with the root location at the top and annotate locations with
registers. A register in the root location with index 4 holds the i-th data value
of the corresponding prefix. The trees describe the fragments of L., for suffixes
of form ack(p) after prefixes msg(1) (Tree [a]) and msg(1)ack(1)msg(2) (Tree
[b]). They each have a register at the root location and two guarded initial tran-
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Fig. 2: Isomorphic SDTs for ack(p) after [a] msg(1), and [b] msg(1)ack(1)msg(2).

l‘lg xgg
ack(p) | p/: 31 ack(p) | p= =3

sitions. In both trees, ack(p) leads to an accepting location only when the value
of the parameter p is equal to the value of the register in the root location (i.e.,
the value of the parameter from the most recent msg(p)).

Learner. The learner infers a register automaton that accepts the unknown
target language by making tree queries and equivalence queries. At a very ab-
stract level, our learning algorithm builds a prefix-closed set of prefizes, i.e., test
sequences with concrete data values that reach control locations of the inferred
register automaton. To determine when prefixes should lead to the same control
location in the automaton, the learner compares SDTs to each other. Prefixes
with equivalent SDTs (isomorphic up to renaming of registers and locations) can
be unified. The transitions of SDTs will be used to create registers, guards, and
assignments in the automaton. For example, the trees in Fig. 2 are equivalent
— meaning that the corresponding prefixes msg(1l) and msg(1)ack(1)msg(2)
should lead to the same location.

The learner submits the hypothesis automaton to an equivalence query. If the
equivalence query is successful, the algorithm terminates; otherwise, a counterex-
ample is returned. Counterexamples guide the algorithm to make tree queries
for larger fragments of the target language, e.g., for more and/or longer suffixes
after a given prefix. The resulting SDT's will lead to refinements in the hypoth-
esis: previously unified prefixes may be split, new registers may be introduced,
and transitions may be refined or new ones introduced.

Related work. The problem of generating models from implementations has
been addressed in a number of different ways. Proposed approaches range from
mining source code [4], static analysis [25] and predicate abstraction [3,24] to
dynamic analysis [12, 6, 28, 22]. Closest to our work are approaches that combine
an automata learning algorithm with a method for inferring constraints on data.
An early black-box approach to inferring EFSM-like models is [20], where models
are generated from execution traces by combining passive automata learning
with the Daikon tool [10].

A number of approaches combine active automata learning with different
methods for inferring constraints on data parameters. All these approaches follow
a pattern similar to CEGAR (counterexample guided abstraction refinement).
A sequence of models is refined in a process that is usually monotonic and con-
verges to a fixpoint. Active automata learning has been combined with symbolic
execution [13,8] and an approach based on support vector machines [29] for
inferring constraints on data parameters in white-box scenarios. In white-box



learning scenarios (as in other static analyses) registers or state variables do not
have to be inferred as they are readily available. Sometimes abstraction is used
to reduce the size of constructed models. In contrast, our approach will infer
models with a minimal set of required registers.

Previous works based on active automata learning that infer data constraints
from tests in a black-box scenario have been restricted to the case where the only
operation on data is comparison for equality [16,1,7]. Other approaches infer
models without symbolic data constraints [17,23] or require manually provided
abstractions on the data domain [2]. In general, black-box methods can infer
complex (e.g., arithmetic) constraints only at a very high cost — if at all. Our
black-box implementation is subject to these principal limitations, too.

While existing approaches extend active learning to a fix class of behavioral
models, we present a general purpose automata learning algorithm that can be
combined with any method for generating data constraints (meeting the require-
ments we discuss in this paper).

Register automata are similar to the symbolic transducers of [26]. It is an
open question if some of the decidability results for symbolic transducers can be
adapted to RAs to help answer for which relations and operations tree queries
and equivalence queries are decidable.

Outline. In Sec. 2, we introduce register automata and data languages. In Sec. 3,
we define symbolic decision trees and discuss how a tree oracle answers tree
queries. We present the details of the learning algorithm in Sec. 4, and Sec. 5
presents the results of applying it in a small series of experiments. Here, we
also briefly describe the implementation of a teacher for our learning framework.
Conclusions are in Sec. 6.

2 Preliminaries

In this section, we introduce the central concepts of our framework: theories,
data languages, and register automata.

Theories. Our framework is parameterized by a theory, which consists of an
unbounded domain D of data values, and R is a set of relations on D. The
relations in R can have arbitrary arity. Known constants can be represented by
unary relations. For example, the theory of natural numbers with inequality is
the theory (N,{<}) where N is the natural numbers and < is the inequality
relation on N. In the following, we assume that some theory has been fixed.

Data languages. We assume a set X of actions, each with an arity that de-
termines how many parameters it takes from the domain D. In this paper, we
assume that all actions have arity 1; it is straightforward to extend our results
to the case where actions have arbitrary arity. A data symbol is a term of form
a(d), where a is an action and d € D is a data value. A data word is a sequence
of data symbols. For a data word w = ay(dy) ... a,(dy), let Acts(w) denote its
sequence of actions a; ..., and Vals(w) its sequence of data values dj ... d,.
The concatenation of two data words w and w’ is denoted ww’. Two data words



w = ai(dy)...an(d,) and w' = ay(d})...an(d),) are R-indistinguishable, de-
noted w ~r w', if Acts(w) = Acts(w’) and R(d;,,....d;;) <> R(d},,....d;})
whenever R € R and iy, ...,%; are indices between 1 and n. Intuitively, w and
w’ are R-indistinguishable if they have the same sequences of actions and cannot
be distinguished by the relations in R.

A data language L is a set of data words that respects R in the sense that
w ~r w implies w € L < w’ € L. A data language can be represented as a
mapping from the set of data words to {4, —}, where + stands for accept and
— for reject.

Register automata. Assume a set of registers (or variables), ranged over by
X1, %o, . ... A parameterized symbol is a term of form «(p), where « is an action
and p a formal parameter. A guard is a conjunction of negated and unnegated
relations (from R) over the parameter p and registers. An assignment is a simple
parallel update of registers with values from registers or p.

Definition 1. A register automaton (RA) is a tuple A = (L,ly, X, I, \), where

— L is a finite set of locations, with Iy € L as the initial location,

— A maps each [ € L to {+, -},

— X maps each location [ € L to a finite set X ({) of registers, and

— I is a finite set of transitions, each of form (I, a(p), g, , '), where

[ € L is a source location,

I’ € L is a target location,

a(p) is a parameterized symbol,

g is a guard over p and X(I), and

7 (the assignment) is a mapping from X' (I') to X(I) U{p} (meaning that
the value of m(x;) is assigned to the register x; € X'(I')). O

We require register automata to be completely specified in the sense that when-
ever there is an a-transitions from some location | € L, then the disjunction of
the guards on a-transitions from [ is true.

Let us now describe the semantics of an RA. A state of an RA A = (L, 1o, X, I, \)
is a pair (l,v) where | € L and v is a valuation over X'(l), i.e., a mapping from

X (1) to D. The state is nitial if | = ly. A step of A, denoted (I,v) oA, {1,
transfers A from (I,v) to (I',v’) on input of the data symbol a(d) if there is a
transition (I, a(p), g, 7, ') € I' with

1. v | gld/p], i.e., d satisfies the guard g under the valuation v, and
2. /' is the updated valuation with v/(z;) = v(z;) if n(z;) = z;, otherwise
V(x;) =dif w(x;) = p.

A run of A over a data word w = «(dy) ... a(dy,) is a sequence of steps

a1(dy)

Uosvo) 2% (i) o (e, vpy) S

<ln7Vn>

for some initial valuation vgy. The run is accepting if X(I,,) = + and rejecting if
A(ln) = —. The word w is accepted (rejected) by A under vy if A has an accepting



(rejecting) run over w which starts in (I, vp). Note that an RA defined as above
does not necessarily have runs over all data words.

We define a simple register automaton (SRA) to be an RA with no registers
in the initial location, whose runs over a given data word are either all accepting
or all rejecting. We use SRAs as acceptors for data languages.

3 Tree Queries

In this section, we first define symbolic decision trees (SDTs), which are used to
symbolically describe a fragment of a data language. We then state conditions
for the construction of SDTs, which is done by a tree oracle.

Symbolic decision trees. A symbolic decision tree (SDT) is an RA T =
(L,lp, X, I',\) where L and I" form a tree rooted at lp. In general, an SDT
has registers in the initial location; we use X (7") to denote these registers X (lp).
Thus, an SDT has well-defined semantics only wrt. a given valuation of X' (7).

If [ is a location of T, let T[l] denote the subtree of T rooted at I. Let T
and 7' be two SDTs, such that v : X(7) — X(7") is a bijection from the initial
registers of T to the initial registers of 7. We say that 7 and T’ are equivalent
under vy, denoted T ~, 7", if 7 can be extended to a bijection from all registers
of T to all registers of 7/, under which 7 and 7' are isomorphic.

Let a symbolic suffiz be a sequence of actions in X*. Let u be a data word
with Vals(u) = di,...,dg. Let v, be defined by v, (x;) = d;. We require that
for each data word w and each guard g over p and Vals(u), the guard g has
a representative data value in D, denoted d9, such that v, | g[dd/p] (i.e., a9
satisfies p after u), and such that whenever ¢’ is a stronger guard satisfied by a9
(i.e., vy = g[d9/p]) then 49 = a9,

Definition 2. For a data language £, a data word v with Vals(u) = dy, ..., dx,
and a set V' of symbolic suffixes, a (u,V)-tree is an SDT T that has runs over
all data words v with Acts(v) € V, such that v is accepted by 7 under v, iff
uv € L (and rejected iff uv ¢ L) whenever Acts(v) € V. Moreover, in any run of
T over a data word v, the register x; may contain only the value of the ith data
value in uw. O

The last requirement simplifies the matching of decision trees. It can be enforced,
e.g., by requiring that whenever (I, a(p),g,7,l’) is the jth transition on some
path from ly, then for each z; € X' (') we have either (i) i < k+j and 7 (z;) = 2,
or (i) i = k4 j and 7(z;) = p (recall that k is the length of w).

The initial a-transitions of an SDT are the transitions for action o from
the root location ly, guarded by initial a-guards. The SDT in Fig. 2 [a] has two
initial ack(p)-transitions with initial ack(p)-guards p = z1 and p # 1.

Tree oracles. A key concept in our approach is that of tree queries. Tree queries
are made to a tree oracle, which returns an SDT. To ensure the consistency of
tree queries, a tree oracle must satisfy the conditions in the following definition.
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Fig. 3: [a] SDT for msg(p) after prefixes e and msg(1)ack(1). Refined SDTs for
suffix msg(p)ack(p) after [b] € and [c] msg(1)ack(1).

Definition 3. Let £ be a data language. A tree oracle for L is a function O,
which for a data word u and a set V' of symbolic suffixes returns a (u, V)-tree
T, and satisfies the following constraints.

1. If V CV’, then O (u, V') ~, Oz(u, V') implies Of(u, V) ~, Oz (u,V) for
all u,u” and ~ (i.e., adding more symbolic suffixes cannot make inequivalent
trees equivalent).

2. If V. C V' then for each initial a-transition of O (u,V) with guard g,
there is some initial a transition of O (u, V') with a stronger guard ¢’ (i.e.,
v E 9 — 9).

3. If (ly, (p), g, m,1) is an initial transition of O (u, V'), then Of(u, V)[]] ~,

O (ua(d),a=tV), where d = d¢, and + is the identify mapping (i.e., any

subtree of O, (u, V) must be isomorphic to the subtree after d: here o=V

denotes the set of sequences a; - - - v, such that aa; -+ - a,, € V). O

The first two conditions in Def. 3 ensure monotonicity: First, extending V'
will only preserve or introduce inequivalence between trees of different prefixes.
Second, by gradually extending V', we will only refine trees and not, e.g., merge
transitions or forget registers. Fig. 3 [b] and [c] show SDTs that refine SDT [a].
SDT [b] refines [a] by adding an assignment 7 := p to the initial transition and
by adding new transitions after the initial one. SDT [c] refines [a] by splitting
the initial transition into two transitions with refined guards, and by initializing
a register in the root location. The third condition ensures that it is sufficient
to consider concrete prefixes with representative data values during learning.

Finally, let two data words u and u’ be equivalent, denoted by u =, ' if
Or(u,V) ~y O (v, V) for some vy and any finite V. A data language L is reqular
if =p, has finite index. The regularity of £ is relative to the implementation of
tree queries, since =¢,, is defined on SDTs.

The following adaptation of the Myhill/Nerode theorem provides the basis
for convergence of the automata learning algorithm presented in the next section.

Theorem 1 (Myhill-Nerode). Let £ be a data language, and let O, be a
tree oracle for L. If the equivalence =, has finite index, then there is an SRA
which accepts precisely the language L. ad
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Fig. 4: Hypothesis [a] (without error location [) and its observation table (right).
Transitions [b] for suffix msg(p)ack(p) after prefix msg(1)ack(1) in hypothesis.

4 The SL* Algorithm

This section presents the central ideas for an active automata learning algorithm
SL* (Symbolic L*, reminiscent of the L* algorithm). To construct an SRA for
some unknown data language, we need to infer locations, transitions, and reg-
isters. Locations of an SRA can be characterized by their SDTs, which are
obtained by making tree queries. Data words with equivalent SDT's will lead to
the same location. The initial transitions of the SDTs will serve as transitions
in the SRA. The registers of an SDT will become registers in the location that
the SDT represents. A hypothesis automaton is constructed and submitted for
an equivalence query. If it matches (which will happen eventually for regular data
languages), the algorithm terminates. Otherwise, the returned counterexample
is processed, leading to refinement of the hypothesis.

The SL* algorithm maintains an observation table (U, V,Z), where U is a
prefix-closed set of data words, called short prefizes, V is a set of symbolic
suffixes, and Z maps each element u in U to its (u, V)-tree. The algorithm also
maintains a finite set U™ of extended prefixes of the form ua(d) (abbreviated
ua), such that u € U and d is 49, where g is an initial a-guard of Z(u). Fig. 4
(right) shows an observation table for the example in Sec. 1. A set of symbolic
suffixes V' labels the column; rows are labeled with short prefixes from U (above
the double line) and with prefixes from U™ (below the double line). Each table
cell (referred to by row label u and column label V') stores the SDT Z(u).

Algorithm 1 shows a pseudocode description of SL*. The algorithm is initial-
ized (line 1) with U containing the empty word, the set of symbolic suffixes V'
being the empty sequence together with the set of all actions, and Z(€) being the
SDT O, (e, V). The algorithm then iterates three phases: hypothesis construction,
hypothesis validation, and countererample processing until no more counterex-
amples are found, monotonically adding locations and transitions to hypothesis
automata. We detail these phases below, referring to lines in Algorithm 1.



Algorithm 1 SL*

Require: A set Y of actions, a data language £, a tree oracle O for L.
Ensure: An SRA H with L(H) =L

1. U« {e}, V+ ({edul), Z(e) « Or(e,V) > Initialization

2: loop

3: repeat > Hypothesis construction
4: Ut + {ua(d?) : ue U, a € X, and g initial a-guard of Z(u)}

5: For each u € (UUUY), Z(u) < Or(u,V)

6: if Jue Ut st. Z(u) %, Z(') for any v and w' € U then

7 U+ UU{u}

8: if Jua € Ut and Jz; € X(Z(ua)) N Vals(u) s.t. x; ¢ X(Z(u)) then

9: V « VU{av} for v € V with z; € X(Or (uc, {v}))

10: until (U,V, Z) is closed and register-consistent

11: H «+ Hyp((U,V, Z))

12: if eq(H) then Return H > Hypothesis validation
13: else > Counterexample processing
14: for (u;—1,;(p),gi,mi,u;) in run of H over o do

15: if g; does not refine an initial trans. of O (u;—1,Vi—1) then V « V U V;_;
16: if Orz(ui—10u, Vi) 2y Or(ui, Vi) for v used to construct H then

17: VvV uy

18: end loop

Hypothesis construction (lines 3-11). In this phase, the algorithm attempts

to construct a hypothesis automaton by making tree queries and entering the

results in an observation table. The answer to a tree query for the prefix v and

the set of symbolic suffixes V' is the SDT O (u, V), stored in the table as Z(u).
An observation table (U, V, Z) is

— closed, if for every u € U™ there is a short prefix v’ € U and a 7 such that
Z(u) ~, Z(u'). Closedness ensures that all transitions in the automaton
have a target location. If the table is not closed, then u leads to a location
not covered by U, and Z(u) proves it by not being equivalent to Z(u’) for
any short prefix «’. (U, V, Z) is closed by making u a short prefix, i.e., adding
it to U.

— register-consistent, if (X(Z(ua) N Vals(u)) € X(Z(u)) for every ua € UT.
Register-consistency ensures that whenever a data value in u is needed to
construct the SDT after ua, then it also occurs in the tree after u. If the
table is not register-consistent, then Z(u«) has a register that expects a value
from u but Z(u) does not have a register for storing this value. We make
(U,V, Z) register-consistent by extending V with the appropriate abstract
word av with v € V, propagating the missing register backwards to Z(u).

A closed and register-consistent observation table (U, V, Z) can be used to-
gether with a set U™ of extended prefixes to construct a hypothesis automaton
Hyp({U,V,Z)) = (L,lo, X, I, \), where

— L=U and [y = ¢,



— X maps each location v € U to X(Z(u)) (X (lp) is the empty set),
— AMu) =+ if u € L, otherwise A(u) = —, and
— each ua € (UUUT) with corresponding initial a-transition (lo, a(p), g, m, ")
of Z(u) generates a transition (u, a(p), g, 7', u') in I', where
e u' is the (unique) prefix in U with Z(u«a) ~, Z(u'),
e 7' is an assignment X (Z(u')) — (X(Z(u)) U{p}). For z; € X(Z (")),
we define 7/ (x;) = vy~ (x;) if v~ (x;) stores a data value of u in Z(u«),
and 7'(x;) = p otherwise.

Fig. 4 shows an observation table that is closed and register-consistent. Fig. 4 [a]
shows the hypothesis that can be constructed from it. In the table, rows for short
prefixes (above the double line) are annotated with corresponding locations in
the hypothesis. The assignment on the transition from [y to [y and the guard on
the transition from Iy to Iy are both derived from the SDT for prefix msg(1).

Hypothesis validation (line 12). The hypothesis automaton H is submitted
for an equivalence query. The teacher either replies 'OK’, or returns a counterex-
ample (a word that is accepted by H but rejected by the target system, or vice
versa). If it replies 'OK’, the algorithm terminates and returns H. Otherwise,
the counterexample has to be analyzed.

Counterexample analysis (lines 13-16). A counterexample indicates either
that a location is missing, (i.e., that U has to be extended), or that a transition
is missing, (i.e., that SDTs need to be refined), or that we used an incorrect
renaming v between some SDT's when constructing the hypothesis. For a coun-
terexample o of length m we denote by o; its prefix of length 4, and by v; its
suffix of length m — i. Moreover, let V; be the singleton set {Acts(v;)}.

. i(d;
In a run of H over o, the i-th step (u;—1,v;—1) u (u;, v;) traverses tran-

sition (u;—1, ;(p), g, i, u;), i.e., prefix o; leads to the location corresponding to
short prefix u; from U. In order to determine at which step the run of H over o
diverges from the behavior of the system under learning, we analyze the sequence
Ug = €, ..., Uy, and the corresponding (u;, V;)-trees for 0 < i < m computed by
Or(u;, Vi), using an argument similar to the one presented in [21]: Since o is
a counterexample and V' contains ¢, there is an index j of the counterexample
for which w;_; together with O (u;_1,V;-1) contains a counterexample to #,
while u; and O (uj,V;) do not. We can then distinguish two cases.

Case 1. The guard g; in the step of H from w;_; to u; does not refine an
initial transition of Og(u;—1,V;—1). In this case the SDT distinguishes cases
that H does not distinguish. Adding V;_; to V' will result in new and refined
transitions from u;_; in the hypothesis. This is guaranteed by the monotonicity
requirement on tree constructors in Def. 3. Consider, e.g., the counterexample
msg(1)ack(1)msg(1)ack(1) to the hypothesis in Fig. 4 at index 3. The hypothesis
in Fig. 4 [b] has only one transition with guard true after msg(1)ack(1). The
corresponding SDT for L, (Fig. 3 [c]), on the other hand, has two initial
transitions, and neither of them is refined by the true. Adding msg(p)ack(p) to
V will add these transitions to the hypothesis.



Case 2. The tree Of(uj,V;) is not isomorphic to the corresponding subtree
after a(d?’_,) of Og(uj_1,Vj—1) under the renaming of registers v that was
used in the hypothesis (only one of these trees contains a counterexample to
H). Adding V; to V will lead to either Of(u;,V) % Og(uj—1(d¥,_,), V) and
uj,loz(dﬁ]j;l) will become a separate location, or v will be refined. Consider again
the counterexample msg(1)ack(1)msg(1)ack(1) to the hypothesis in Fig. 4; this
time at index 2. Here, uj_1a(d%,_,) is msg(1)ack(l), and u; = uy is e. The
SDTs for these two prefixes and the suffix msg(p)ack(p) are shown in Fig. 3 [b]
and Fig. 3 [c]. They are not equivalent. Adding the suffix msg(p)ack(p) to V
will lead to a new location for msg(1)ack(1) in the next hypothesis.

Correctness and termination. That SL* returns a correct SRA upon ter-
mination follows by the properties of our teacher. For regular data languages,
termination follows from the properties of tree queries in Sec. 3, from Theorem 1,
and from the algorithm itself: SDTs will only be refined when adding symbolic
suffixes, and this can happen only finitely often. Each added symbolic suffix will
either lead to a new transition, a refined transition, a new register assignment or
a new location. By adapting arguments from other contexts [5, 16], Theorem 1
can be used to show that SL* converges to a minimal (in terms of locations and
registers) SRA for £. Note that this minimal number of locations and transitions
also depends on the particular tree oracle that is used.

Complexity. We estimate the worst case number of counterexamples and show
how they lead to a correct model with n locations, ¢ transitions, and at most r
registers per location. Since each location has one access sequence, n < t, and
thus we estimate the costs in ¢ and r only. The final model is minimal relative
to the implementation of tree queries: it has one location per class of =¢,.. Each
counterexample results in one additional suffix in the observation table, leading
to a new transition or to discarding a bijection between two prefixes in U. The
former can happen ¢ times before all transitions are identified. The latter can
happen at most ¢r times, since it corresponds to breaking a symmetry between
two of at most r registers at one of n < t locations (cf. [14]). The algorithm
terminates after O(t¢r) equivalence queries. The number of tree queries depends
on the length m of the longest counterexample and on the size of the observation
table. The algorithm uses a maximum of m calls per counterexample, and the
size of U UU™ in the final observation table is ¢ + 1. This leads to O(t2r + trm)
tree queries and yields the following theorem.

Theorem 2. The algorithm SL* infers a data language £ with O(tr) equiva-
lence queries and O(t?r + trm) tree queries. O

5 Implementation and Evaluation

We have implemented the SL* algorithm together with a teacher for a black-box
scenario and fixed set of relations on integers and rationals. We allow equalities
and/or inequalities as well as simple sums of registers and pre-defined constants
(e.g, p=x1 + a9 Or p=1x1 +5).



ack(p) | p==x fin—ack(p) | p=x

init(p) | p=z syn(p) | p=z+1 ack(p) | p==
xT:=p x:=p —
()

Fig.5: Connection establishment of TCP (only non-reflexive transitions).

fin—ack(p) | p=x

The implementation of tree queries O, (V,) is based on the ideas for construct-
ing canonical constraint decision trees presented in [9] (Proof of Theorem 1). The
set of R-distinguishable classes of data words of the form uv where Acts(v) € V
can be represented in an SDT with maximally refined guards (so-called atoms).
We use an SMT solver (Z3%) to generate tests for all atoms in this SDT. Finally,
atoms are merged in a bottom-up fashion based on test results.

Equivalence queries have been implemented using tree queries (similar to the
approach in [13]). We generate O (e, w) for all w € X* up to some depth k and
compare the SDTs to the hypothesis. We start with £ = 3 and increase k until
a fixed time limit is reached (10 minutes) or until a counterexample is found.

We have inferred a simplified version of the connection establishment phase
of TCP, a bounded priority queue from the Java Class Library, and a set of five
smaller models (Alternating-bit protocol, Sequence number, Timeout, an ATM,
and a Fibonacci counter). Here, we only detail the TCP model. Fig. 5 shows the
connection establishment phase of TCP. The example uses a set of five actions:
init, syn, syn—ack, ack, and fin—ack. The transition init(p) was added to get
an initial sequence number. Each synchronizing message increases this number;
all other messages use the current sequence number.

We used common optimizations for saving tests: a cache and a prefix-closure
filter. Table 1 shows the results. We report the locations, variables, and transi-
tions for all inferred models. For each case, we state the number of constants,
relations (< denotes the combination of equalities and inequalities), and sup-
ported terms: p 4 ¢ indicates sums of parameters and constants, and p + p sums
of different parameters. We report the number of tree queries (TQs) and equiv-
alence queries (EQs) made. For equivalence queries, we also state the depth k
at which the last counterexample was found and the greatest explored depth ko
(up to which inferred models are guaranteed to be correct). Finally, we show
execution times.

Time consumption for learning is below one second for most of the exam-
ples; the only “real” Java class, the priority queue, takes a little more time (4.3
seconds). The difference between k; and ko gives an idea of how likely the final
hypothesis is correct: If ko is bigger than ki, then the depth was increased by
ko — k1 without finding a new counterexample. A big difference suggests that
the learning algorithm has converged to the correct RA. For some examples
no counterexamples where found and for the Timeout example ks = oo, i.e.,
the equivalence query terminated successfully. This was possible because all se-
quences of length greater than two are not in the language of this example. For

* http://23.codeplex. com



Model Language class Queries | EQ Times

Loc’s Var’s Trans’s|Const’s Rel’s Op’s| TQs EQs| k1 k2| TQs [s] EQs [s]
ABP 3 0 5 2 = - 9 1] - 11 0.1 599.9
Sequence Number 3 1 4 1 = p+tc 8 1| -10 0.1 599.9
TCP 7 1 51 1 = p+c| 187 2] 6 7 0.6 599.4
PriorityQueue 8 2 33 0 < - 113 5] 6 7 4.3 595.7
Timeout 4 1 5 1 < p+c 9 1| - o 0.2 0.1
ATM 3 1 7 3 < p+c 16 2] 3 4 1.3 598.7
Fibonacci counter 4 2 6 0 < p+p 19 2] 3 5 0.2 599.8

Table 1: Experimental results obtained on a 2GHz Intel Core i7 with 8GB of
memory running Linux kernel 3.8.0.

the examples with more relations (<, and p + ¢ or p 4+ p) the reached depth
ko is smaller, regardless of the number of locations and transitions in the final
model. This is due to the exploding number of R-distinguishable classes of data
words in such cases. One way of addressing this challenge in the future could be
introducing typed parameters and using multiple simpler disjoint domains.

6 Conclusions

We have presented a symbolic learning algorithm which can be parameterized by
methods for constructing symbolic decision trees and which infers models that
capture both control and data aspects of a system. Our preliminary implemen-
tation demonstrates that the approach can infer protocols comprising sequence
numbers, time stamps, and variables that are manipulated using simple arith-
metic operations or compared for inequality even in a black-box scenario.

A particularly promising direction for future research will be the combination
with white-box methods like symbolic execution, both for searching counterex-
amples as well as for supporting construction of decision trees. We also plan to
investigate decidability of tree queries and equivalence queries in our learning
model for different data domains.
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