Abstract
Stereoscopic laparoscopy provides the surgeon with the depth perception at the surgical site to facilitate fine micro-manipulation of soft-tissues. The technology also enables computer-assisted laparoscopy where patient specific models can be overlaid onto laparoscopic video in real-time to provide image guidance. To maintain graphical overlay alignment of image-guides it is essential to recover the camera motion and scene geometry during the procedure. This can be performed using the image data itself, however, despite of the mature state of structure-from-motion techniques, their application in minimally invasive surgery remains a challenging problem due non-rigid scene deformation. In this paper, we propose a method for recovering the camera motion of stereo endoscopes through a multi-model fitting approach which segments rigid and non-rigid structures at the surgical site. The method jointly optimizes the segmentation of image and uses the rigid structure to robustly estimate the motion of the laparoscope. Synthetic and in-vivo experiments show that the proposed algorithm outperforms RANSAC-based stereo visual odometry in non-rigid laparoscopic surgery scenes.
Miguel Lourenço and João Barreto want to thank QREN-Mais Centro by funding through the project Novas Tecnologias para apoio à Saúde e Qualidade de Vida, Projecto A- Cirurgia e Diagnóstico Assistido por Computador Usando Imagem and the Portuguese Science Foundation by funding through grant SFRH/BD/63118/2009. Danail Stoyanov thanks The Royal Academy of Engineering Research Fellowship for supporting his work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stoyanov, D.: Stereoscopic Scene Flow for Robotic Assisted Minimally Invasive Surgery. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 479–486. Springer, Heidelberg (2012)
Geiger, A., Roser, M., Urtasun, R.: Efficient Large-Scale Stereo Matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011)
Maier-Hein, L., et al.: Optical techniques for 3d surface reconstruction in computer-assisted laparoscopic surgery. Medical Image Analysis 17, 974–996 (2013)
Roehl, S., et al.: Dense gpu-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration. Medical Physics 39, 1632–1645 (2012)
Burschka, D., Li, M., Ishii, M., Taylor, R., Hager, G.: Scale-invariant registration of monocular endoscopic images to ct-scans for sinus surgery. Medical Image Analysis 9, 413–426 (2005)
Mountney, P., Yang, G.-Z.: Motion compensated slam for image guided surgery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 496–504. Springer, Heidelberg (2010)
Garg, R., Roussos, A., Agapito, L.: Dense variational reconstruction of non-rigid surfaces from monocular video. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1272–1279 (2013)
Luo, X., Mori, K.: Robust Endoscope Motion Estimation Via an Animated Particle Filter for Electromagnetically Navigated Endoscopy. IEEE Transactions on Biomedical Engineering 61, 85–95 (2014)
Roussos, A., Russell, C., Garg, R., Agapito, L.: Dense multibody motion estimation and reconstruction from a handheld camera. In: IEEE International Mixed and Augmented Reality, pp. 31–40 (2012)
Isack, H., Boykov, Y.: Energy-based geometric multi-model fitting. International Journal of Computer Vision 97, 123–147 (2012)
Giannarou, S., Zhang, Z., Yang, G.Z.: Deformable structure from motion by fusing visual and inertial measurement data. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4816–4821 (2012)
Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: Dense 3d reconstruction in real-time. In: IEEE Intelligent Vehicles Symposium, pp. 963–968 (2011)
Farnebäck, G.: Two-Frame Motion Estimation Based on Polynomial Expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003)
Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A 4, 629–642 (1987)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–375. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Lourenço, M., Stoyanov, D., Barreto, J.P. (2014). Visual Odometry in Stereo Endoscopy by Using PEaRL to Handle Partial Scene Deformation. In: Linte, C.A., Yaniv, Z., Fallavollita, P., Abolmaesumi, P., Holmes, D.R. (eds) Augmented Environments for Computer-Assisted Interventions. AE-CAI 2014. Lecture Notes in Computer Science, vol 8678. Springer, Cham. https://doi.org/10.1007/978-3-319-10437-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-10437-9_4
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10436-2
Online ISBN: 978-3-319-10437-9
eBook Packages: Computer ScienceComputer Science (R0)