Skip to main content

Improving Content Recommendation in Social Streams via Interest Model

  • Chapter
  • First Online:
Computer and Information Science

Part of the book series: Studies in Computational Intelligence ((SCI,volume 566))

  • 763 Accesses

Abstract

The current microblog recommendation approaches mainly consider users’ interests. But because user’s interests are changing dynamically and they have low activity, it’s hard to build user interest model. In this paper, we propose a new approach to recommend information based on multiaspect similarities of interest and new dynamic strategy for defining long-term and short-term interests according to user’s interest changing. Recommended information is ranked by two factors: the similarity between user’s interest and information, tie-strength of user interest. We implemented three recommendation engines based on Sina Micro-blog and deployed them online to gather feedback from real users. Experimental results show that this method can recommend interesting information to users and improve the precision and stability of personalized information recommendation by 30 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  2. Bernstein, M., Suh, B., Hong, L.: Eddi: Interactive topic-based browsing of social status streams. In: Proceedings UIST’10. 2010

    Google Scholar 

  3. Boyd, D., Golder, S., Lotan, G.: Tweet tweet retweet: Conversational aspects of retweeting on Twitter. In: Proceedings HICSSS’10, 2010

    Google Scholar 

  4. Chen, J., Nairn, R., Chi, E.: Speak little and well: recommending conversations in online Social streams. In: Proceedings CHI’11. pp. 217–226. ACM, New York, USA (2011)

    Google Scholar 

  5. Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.H.: Short and tweet: experiments on recommending content from information streams. In: Proceedings CHI’10, ACM Press (2010)

    Google Scholar 

  6. Gilbert, E., Karrahalios, K.: Predicting tie strength with social media. In: Proceedings CHI’09. 2009

    Google Scholar 

  7. Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)

    Article  Google Scholar 

  8. Kincaid, J.: EdgeRank: The secret sauce that makes Facebook’s news feed tick. Retrieved from http://techcrunch.com/2010/04/22/facebook-edgerank 2010

  9. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Comput. Soc. 7(1), 76–80 (2003)

    Article  Google Scholar 

  10. Mehrotra, R., Sanner, S., Buntine, W., Xie, L.: Improving LDA topic models for Microblogs via tweet pooling and automatic labeling

    Google Scholar 

  11. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of ACM DL’00. pp. 195–204 (2000)

    Google Scholar 

  12. Paek, T., Gamon, M., Counts, S., Chickering, D.M., Dhesi, A.: Predicting the importance of newsfeed posts and social network friends. In: Proceedings AAAI’10. 2010

    Google Scholar 

  13. Pazzani, M.J., Muramatsu, J., Billsus, D.: Syskill & webert: Identifying interesting web sites. pp. 54–61, AAAI/IAAI (1996)

    Google Scholar 

  14. Sahami, M., Heilman, T.D.: A Web-based kernel function for measuring the similarity of short text snippets. In: Proceedings of WWW’06. 2006

    Google Scholar 

  15. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process Manage. 24(5), 513–523 (1988)

    Article  Google Scholar 

  16. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Recommender systems for large-scale E-Commerce: Scalable neighborhood formation using clustering. In: Proceedings of ICCIT’02. 2002

    Google Scholar 

  17. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: proceedings of SIGIR’02. 2002

    Google Scholar 

  18. Weng, J., Lim, E., Jiang, J., He, Q.: TwitterRank: finding topic- sensitive influential twitterers. Proceedings of the 3rd ACM international conference on web search and data mining (WSDM \(\square \) 10), pp. 261–270. ACM, New York, USA (2010)

    Google Scholar 

  19. Yu, Y., Qiu, G.H., Chen, A.P.: Friend recommendation algorithm based on mixed graph in online social networks. New technology of library and information service. 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, J., Lei, Y. (2015). Improving Content Recommendation in Social Streams via Interest Model. In: Lee, R. (eds) Computer and Information Science. Studies in Computational Intelligence, vol 566. Springer, Cham. https://doi.org/10.1007/978-3-319-10509-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10509-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10508-6

  • Online ISBN: 978-3-319-10509-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics