Abstract
A modified version of particle swarm optimization algorithm is proposed for minimization of maximal real part of a polytopic system eigenvalues. New initialization procedure and special projection operation are introduced to keep all particles working effectively inside a simplex of feasible positions. The algorithm is tested on several benchmarks and statistical evidences for its’ high efficiency are provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lewis, A.S.: The mathematics of eigenvalue optimization. Math. Program., Ser. B 97, 155–176 (2003)
Chesi, G.: Measuring the Instability in Continuous-Time Linear Systems with Polytopic Uncertainty. In: 52nd IEEE Conference on Decision and Control, pp. 1131–1136 (2013)
Apkarian, P., Noll, D., Prot, O.: Trust region spectral bundle method for nonconvex eigenvalue optimization. SIAM. J. Optim. 19(1), 281–306 (2009)
Chen, X., Qi, H., Qi, L., Teo, K.L.: Smooth convex approximation to the maximum eigenvalue function. Jour. of Global Optimization 30, 253–270 (2004)
Blanco, A.M., Bandoni, J.A.: Eigenvalue and Singular Value Optimization. In: ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones, pp. 1256–1272 (2003)
Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE Service Center, Piscataway (1995)
Parsopoulos, K., Vrachatis, M.N.: Particle swarm optimization and intelligence: advances and applications, Hershey, New York (2009)
Parsopoulos, K.E., Vrahatis, M.N.: UPSO: A unified particle swarm optimization scheme. In: Proc. Int. Conf. Comput. Meth. Sci. Eng. (ICCMSE 2004). Lecture Series on Computer and Computational Sciences, vol. 1, pp. 868–873. VSP International Science Publishers, Zeist (2004)
Cao, Y.J.: Eigenvalue optimization problems via evolutionary programming. Electronics Letters 33(7), 642–643 (1997)
Kabziński, J.: Swarm Capability of Finding Eigenvalues. In: Ramsay, A., Agre, G. (eds.) AIMSA 2012. LNCS, vol. 7557, pp. 172–177. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kabziński, J., Kacerka, J. (2014). Optimization of Polytopic System Eigenvalues by Swarm of Particles. In: Agre, G., Hitzler, P., Krisnadhi, A.A., Kuznetsov, S.O. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2014. Lecture Notes in Computer Science(), vol 8722. Springer, Cham. https://doi.org/10.1007/978-3-319-10554-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-10554-3_17
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10553-6
Online ISBN: 978-3-319-10554-3
eBook Packages: Computer ScienceComputer Science (R0)