Skip to main content

Automatic Bone and Marrow Extraction from Dual Energy CT through SVM Margin-Based Multi-Material Decomposition Model Selection

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8679))

Included in the following conference series:

  • 3609 Accesses

Abstract

In this work, we present a fully-automatic approach for segmenting bone and marrow structures from dual energy CT (DECT) images. The images are represented using a multi-material decomposition model (MMD) computed from a triplet of physical materials at two different energy attenuation levels. We employ support vector machine learning to select the most relevant MMD model for the anatomical structure of interest so that highly accurate segmentation of the said structures can be achieved. We evaluated our approach for segmenting bone and marrow structures with varying amounts of metastatic bone disease on multiple longitudinal follow up patient scans. Our approach shows consistent and robust segmentation despite changes in bone density due to disease progression, high-density contrast material uptake in neighboring tissue, and significant metal artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pache, G., Krauss, B., Strohm, P., Saueressig, U., Blanke, P., Bulla, S., Schäfer, O., Helwig, P., Kotter, E., Langer, M., et al.: Dual-energy CT virtual noncalcium technique: Detecting posttraumatic bone marrow lesions–feasibility study. Radiology 256(2), 617–624 (2010)

    Article  Google Scholar 

  2. Mendonca, P., Lamb, P., Sahani, D.: A flexible method for multi-material decomposition of dual-energy CT images. IEEE Trans. on Medical Imaging 33(1), 99–116 (2014)

    Article  Google Scholar 

  3. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–422 (2002)

    Article  MATH  Google Scholar 

  4. Zacharaki, E.I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E.R., Davatzikos, C.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magnetic Resonance in Medicine 62(6), 1609–1618 (2009)

    Article  Google Scholar 

  5. Westin, C.F., Warfield, S., Bhalerao, A., Mui, L., Richolt, J., Kikinis, R.: Tensor controlled local structure enhancement of CT images for bone segmentation. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1205–1212. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  7. Kang, Y., Engelke, K., Kalender, W.: A new accurate and precise 3D segmentation method for skeletal structures in volumetric CT data. IEEE Trans. on Medical Imaging 22(5), 586–598 (2003)

    Article  Google Scholar 

  8. Gao, Y., Kikinis, R., Bouix, S., Shenton, M., Tannenbaum, A.: A 3D interactive multi-object segmentation tool using local robust statistics driven active contours. Medical Image Analysis 16(6), 1216–1227 (2012)

    Article  Google Scholar 

  9. Vezhnevets, V., Konouchine, V.: GrowCut - Interative multi-label N-D image segmentation. In: Proc. of Graphicon, pp. 150–156 (2005)

    Google Scholar 

  10. Haas, B., Coradi, T., Scholz, M., Kunz, P., Huber, M., Oppitz, U., Andre, L., Lengkeek, V., Huyskens, D., van Esch, A., Reddick, R.: Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies. Phys. Med. Biol. 53(6), 1751 (2008)

    Article  Google Scholar 

  11. Alvarez, R., Seppi, E.: A comparison of noise and dose in conventional and energy selective computed tomography. IEEE Transactions on Nuclear Science 26(2), 2853–2856 (1979)

    Article  Google Scholar 

  12. Goodsitt, M.M., Rosenthal, D.I., Reinus, W.R., Coumas, J.: Two postprocessing CT techniques for determining the composition of trabecular bone. Investigative Radiology 22(3), 209–215 (1987)

    Article  Google Scholar 

  13. Hubbell, J., Seltzer, S.: NISTIR 5632, National Institute of Standards and Technology, Gaithersburg, MD (1995), http://physics.nist.gov/xaamdi

  14. Veeraraghavan, H., Miller, J.V.: Active learning guided interactions for consistent image segmentation with reduced user interactions. In: Intl. Symposium on Biomedical Imaging (2011)

    Google Scholar 

  15. Bachrach, R.G., Navot, A., Tishby, N.: Margin based feature selection - Theory and algorithms. In: Proc. of Intl. Conf. on Machine Learning (2004)

    Google Scholar 

  16. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  17. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  18. Johnson, H.J., McCormick, M., Ibáñez, L., The Insight Software Consortium: The ITK Software Guide, 3rd edn. Kitware, Inc. (2013) (in press)

    Google Scholar 

  19. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J., Pieper, S., Kikinis, R.: 3D Slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  20. Cour, T., Yu, S., Shi, J.: Normalized cut segmentation code, http://www.cis.upenn.edu/~jshi/software/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Veeraraghavan, H., Fehr, D., Schmidtlein, R., Hwang, S., Deasy, J.O. (2014). Automatic Bone and Marrow Extraction from Dual Energy CT through SVM Margin-Based Multi-Material Decomposition Model Selection. In: Wu, G., Zhang, D., Zhou, L. (eds) Machine Learning in Medical Imaging. MLMI 2014. Lecture Notes in Computer Science, vol 8679. Springer, Cham. https://doi.org/10.1007/978-3-319-10581-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10581-9_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10580-2

  • Online ISBN: 978-3-319-10581-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics