Skip to main content

Online Discriminative Multi-atlas Learning for Isointense Infant Brain Segmentation

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8679))

Included in the following conference series:

Abstract

Multi-atlas labeling in a non-local patch manner has emerged as an important approach to alleviate both the possible misalignment and mis-match among patches for guiding accurate image segmentation. However, the relationship among candidate patches and their intra/inter-class variability are less investigated, which limits the discriminative power of these patches. To address these issues, we present a new online discriminative multi-atlas learning method for labeling the target patch by the best representative candidates in a sparse sense. Specifically, the online multi-kernel learning is firstly adopted to map the patches into a cascade of discriminative kernel spaces for producing corresponding probability maps to model a label of each sample in these spaces. Then the online discriminative dictionary learning is proposed to build the atlas that handles the intra-class compactness and inter-class separability simultaneously. Finally, sparse coding is used to select patches in the dictionary for label propagation. In this way, the multi-atlas information dynamically learned with the context probability maps is iteratively incorporated to build the atlas dictionary, for gradually excluding the misleading candidate patches. The proposed method is validated by experiments on isointense infant brain tissue segmentation, and achieves promising results in comparison with several different labeling strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, L., Shi, F., Li, G., Lin, W., Gilmore, J.H., Shen, D.: Integration of sparse multi-modality representation and geometrical constraint for isointense infant brain segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 703–710. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Wang, L., Shi, F., Li, G., Gao, Y., Lin, W., Gilmore, J.H., Shen, D.: Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage 84, 141–158 (2014)

    Article  Google Scholar 

  3. Warfield, S.K., Zou, K.H., Wells III, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)

    Article  Google Scholar 

  4. Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)

    Article  Google Scholar 

  5. Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J.C., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)

    Article  Google Scholar 

  6. Rousseau, F., Habas, P.A., Studholme, C.: A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imaging 30(10), 1852–1862 (2011)

    Article  Google Scholar 

  7. Wang, H., Suh, J.W., Das, S.R., Pluta, J., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. PAMI 35(3), 611–623 (2013)

    Article  Google Scholar 

  8. Wu, G., Wang, Q., Liao, S., Zhang, D., Nie, F., Shen, D.: Minimizing joint risk of mislabeling for iterative patch-based label fusion. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 551–558. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Wu, G., Wang, Q., Zhang, D., Nie, F., Huang, H., Shen, D.: A generative probability model of joint label fusion for multi-atlas based brain segmentation. Medical Image Analysis 18(6), 881–890 (2014)

    Article  Google Scholar 

  10. Bai, W., Shi, W., O’Regan, D.P., Tong, T., Wang, H., Jamil-Copley, S., Peters, N.S., Rueckert, D.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: Application to cardiac MR images. IEEE Trans. Med. Imaging 32(7), 1302–1315 (2013)

    Article  Google Scholar 

  11. Tong, T., Wolz, R., Coupé, P., Hajnal, J.V., Rueckert, D.: Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling. NeuroImage 76, 11–23 (2013)

    Article  Google Scholar 

  12. Orabona, F., Luo, J., Caputo, B.: Multi kernel learning with online-batch optimization. J. Mach. Learn. Res. 13, 227–253 (2012)

    MATH  MathSciNet  Google Scholar 

  13. Shalev-Shwartz, S., Srebro, N.: SVM optimization: inverse dependence on training set size. In: ICML, pp. 928–935 (2008)

    Google Scholar 

  14. Jie, L., Orabona, F., Fornoni, M., Caputo, B., Cesa-Bianchi, N.: OM-2: An online multi-class multi-kernel learning algorithm. In: CVPRW, pp. 43–50 (2010)

    Google Scholar 

  15. Yang, M., Zhang, L., Feng, X., Zhang, D.: Fisher discrimination dictionary learning for sparse representation. In: ICCV, pp. 543–550 (2011)

    Google Scholar 

  16. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: ICML, p. 87 (2009)

    Google Scholar 

  17. Liu, J., Ji, S., Ye, J.: SLEP: Sparse Learning with Efficient Projections. Arizona State University (2009)

    Google Scholar 

  18. Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage 58(3), 805–817 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, X., Wang, L., Suk, HI., Shen, D. (2014). Online Discriminative Multi-atlas Learning for Isointense Infant Brain Segmentation. In: Wu, G., Zhang, D., Zhou, L. (eds) Machine Learning in Medical Imaging. MLMI 2014. Lecture Notes in Computer Science, vol 8679. Springer, Cham. https://doi.org/10.1007/978-3-319-10581-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10581-9_37

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10580-2

  • Online ISBN: 978-3-319-10581-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics