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Abstract. With Linked Data, a very pragmatic approach towards achieving the
vision of the Semantic Web has gained some traction in the last years. The term
Linked Data refers to a set of best practices for publishing and interlinking struc-
tured data on the Web. While many standards, methods and technologies devel-
oped within by the Semantic Web community are applicable for Linked Data,
there are also a number of specific characteristics of Linked Data, which have
to be considered. In this article we introduce the main concepts of Linked Data.
We present an overview of the Linked Data lifecycle and discuss individual ap-
proaches as well as the state-of-the-art with regard to extraction, authoring, link-
ing, enrichment as well as quality of Linked Data. We conclude the chapter with a
discussion of issues, limitations and further research and development challenges
of Linked Data. This article is an updated version of a similar lecture given at
Reasoning Web Summer School 2011.



1 Introduction

One of the biggest challenges in the area of intelligent information management is the
exploitation of the Web as a platform for data and information integration as well as for
search and querying. Just as we publish unstructured textual information on the Web as
HTML pages and search such information by using keyword-based search engines, we
are already able to easily publish structured information, reliably interlink this informa-
tion with other data published on the Web and search the resulting data space by using
more expressive querying beyond simple keyword searches.

The Linked Data paradigm has evolved as a powerful enabler for the transition
of the current document-oriented Web into a Web of interlinked Data and, ultimately,
into the Semantic Web. The term Linked Data here refers to a set of best practices for
publishing and connecting structured data on the Web. These best practices have been
adopted by an increasing number of data providers over the past three years, leading to
the creation of a global data space that contains many billions of assertions – the Web
of Linked Data (cf. Figure 1).
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Fig. 1: Overview of some of the main Linked Data knowledge bases and
their interlinks available on the Web. (This overview is published regularly at
http://lod-cloud.net and generated from the Linked Data packages described at
the dataset metadata repository ckan.net.)



In this chapter we give an overview of recent development in the area of Linked
Data management. The different stages in the linked data life-cycle [11,7] are depicted
in Figure 2.

Information represented in unstructured form or adhering to other structured or
semi-structured representation formalisms must be mapped to the RDF data model (Ex-
traction). Once there is a critical mass of RDF data, mechanisms have to be in place to
store, index and query this RDF data efficiently (Storage & Querying). Users must have
the opportunity to create new structured information or to correct and extend existing
ones (Authoring). If different data publishers provide information about the same or
related entities, links between those different information assets have to be established
(Linking). Since Linked Data primarily comprises instance data we observe a lack of
classification, structure and schema information. This deficiency can be tackled by ap-
proaches for enriching data with higher-level structures in order to be able to aggregate
and query the data more efficiently (Enrichment). As with the Document Web, the Data
Web contains a variety of information of different quality. Hence, it is important to
devise strategies for assessing the quality of data published on the Data Web (Quality
Analysis). Once problems are detected, strategies for repairing these problems and sup-
porting the evolution of Linked Data are required (Evolution & Repair). Last but not
least, users have to be empowered to browse, search and explore the structure informa-
tion available on the Data Web in a fast and user friendly manner (Search, Browsing &

Exploration).
These different stages of the linked data life-cycle do not exist in isolation or are

passed in a strict sequence, but mutually fertilize themselves. Examples include the
following:

– The detection of mappings on the schema level, will directly affect instance level
matching and vice versa.

– Ontology schema mismatches between knowledge bases can be compensated for
by learning which concepts of one are equivalent to which concepts of the other
knowledge base.

– Feedback and input from end users can be taken as training input (i.e. as positive or
negative examples) for machine learning techniques in order to perform inductive
reasoning on larger knowledge bases, whose results can again be assessed by end
users for iterative refinement.

– Semantically-enriched knowledge bases improve the detection of inconsistencies
and modelling problems, which in turn results in benefits for interlinking, fusion,
and classification.

– The querying performance of the RDF data management directly affects all other
components and the nature of queries issued by the components affects the RDF
data management.

As a result of such interdependence, we envision the Web of Linked Data to realize
an improvement cycle for knowledge bases, in which an improvement of a knowledge
base with regard to one aspect (e.g. a new alignment with another interlinking hub)
triggers a number of possible further improvements (e.g. additional instance matches).

The use of Linked Data offers a number of significant benefits:



Fig. 2: The Linked Data life-cycle.

– Uniformity. All datasets published as Linked Data share a uniform data model, the
RDF statement data model. With this data model all information is represented in
facts expressed as triples consisting of a subject, predicate and object. The elements
used in subject, predicate or object positions are mainly globally unique IRI/URI
entity identifiers. At the object position also literals, i.e. typed data values can be
used.

– De-referencability. URIs are not just used for identifying entities, but since they can
be used in the same way as URLs they also enable locating and retrieving resources
describing and representing these entities on the Web.

– Coherence. When an RDF triple contains URIs from different namespaces in sub-
ject and object position, this triple basically establishes a link between the entity
identified by the subject (and described in the source dataset using namspace A)
with the entity identified by the object (described in the target dataset using names-
pace B). Through the typed RDF links, data items are effectively interlinked.

– Integrability. Since all Linked Data sources share the RDF data model, which is
based on a single mechanism for representing information, it is very easy to at-
tain a syntactic and simple semantic integration of different Linked Data sets. A
higher level semantic integration can be achieved by employing schema and in-
stance matching techniques and expressing found matches again as alignments of
RDF vocabularies and ontologies in terms of additional triple facts.

– Timeliness. Publishing and updating Linked Data is relatively simple thus facili-
tating a timely availability. In addition, once a Linked Data source is updated it is
straightforward to access and use the updated data source, since time consuming
and error prune extraction, transformation and loading is not required.



Representation \ degree of openness Possibly closed Open (cf. opendefinition.org)
Structured data model Data Open Data
(i.e. XML, CSV, SQL etc.)
RDF data model Linked Data (LD) Linked Open Data (LOD)
(published as Linked Data)

Table 1: Juxtaposition of the concepts Linked Data, Linked Open Data and Open Data.

The development of research approaches, standards, technology and tools for sup-
porting the Linked Data lifecycle data is one of the main challenges. Developing ade-
quate and pragmatic solutions to these problems can have a substantial impact on sci-
ence, economy, culture and society in general. The publishing, integration and aggrega-
tion of statistical and economic data, for example, can help to obtain a more precise and
timely picture of the state of our economy. In the domain of health care and life sciences
making sense of the wealth of structured information already available on the Web can
help to improve medical information systems and thus make health care more adequate
and efficient. For the media and news industry, using structured background informa-
tion from the Data Web for enriching and repurposing the quality content can facilitate
the creation of new publishing products and services. Linked Data technologies can
help to increase the flexibility, adaptability and efficiency of information management
in organizations, be it companies, governments and public administrations or online
communities. For end-users and society in general, the Data Web will help to obtain
and integrate required information more efficiently and thus successfully manage the
transition towards a knowledge-based economy and an information society.

Structure of this chapter. This chapter aims to explain the foundations of Linked Data
and introducing the different aspects of the Linked Data lifecycle by highlighting a par-
ticular approach and providing references to related work and further reading. We start
by briefly explaining the principles underlying the Linked Data paradigm in Section 2.
The first aspect of the Linked Data lifecycle is the extraction of information from un-
structured, semi-structured and structured sources and their representation according to
the RDF data model (Section 3). We present the user friendly authoring and manual
revision aspect of Linked Data with the example of Semantic Wikis in Section 4. The
interlinking aspect is tackled in Section 5 and gives an overview on the LIMES frame-
work. We describe how the instance data published and commonly found on the Data
Web can be enriched with higher level structures in Section 6. We present an overview
of the various data quality dimensions and metrics along with currently existing tools
for data quality assessment of Linked Data in Section 7. Due to space limitations we
omit a detailed discussion of the evolution as well as search, browsing and exploration
aspects of the Linked Data lifecycle in this chapter. The chapter is concluded by sev-
eral sections on promising applications of Linked Data and semantic technologies, in
particular Open Governmental Data, Semantic Business Intelligence and Statistical and
Economic Data.

Overall, this is an updated version of a similar lecture given at Reasoning Web
Summer School 2011 [13].

opendefinition.org


2 The Linked Data paradigm

In this section we introduce the basic principles of Linked Data. The section is partially
based on the Section 2 from [53]. The term Linked Data refers to a set of best practices
for publishing and interlinking structured data on the Web. These best practices were
introduced by Tim Berners-Lee in his Web architecture note Linked Data1 and have
become known as the Linked Data principles. These principles are:

– Use URIs as names for things.
– Use HTTP URIs so that people can look up those names.
– When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL).
– Include links to other URIs, so that they can discover more things.

The basic idea of Linked Data is to apply the general architecture of the World Wide
Web [70] to the task of sharing structured data on global scale. The Document Web
is built on the idea of setting hyperlinks between Web documents that may reside on
different Web servers. It is built on a small set of simple standards: Uniform Resource
Identifiers (URIs) and their extension Internationalized Resource Identifiers (IRIs) as
globally unique identification mechanism [21], the Hypertext Transfer Protocol (HTTP)
as universal access mechanism [43], and the Hypertext Markup Language (HTML) as
a widely used content format [64]. Linked Data builds directly on Web architecture and
applies this architecture to the task of sharing data on global scale.

2.1 Resource identification with IRIs

To publish data on the Web, the data items in a domain of interest must first be identified.
These are the things whose properties and relationships will be described in the data,
and may include Web documents as well as real-world entities and abstract concepts.
As Linked Data builds directly on Web architecture, the Web architecture term resource
is used to refer to these things of interest, which are in turn identified by HTTP URIs.
Linked Data uses only HTTP URIs, avoiding other URI schemes such as URNs [100]
and DOIs2. The structure of HTTP URIs looks as follows:

[scheme:][//authority][path][?query][#fragment]

A URI for identifying Shakespeare’s ‘Othello’, for example, could look as follows:

http://de.wikipedia.org/wiki/Othello#id

HTTP URIs make good names for two reasons:

1. They provide a simple way to create globally unique names in a decentralized fash-
ion, as every owner of a domain name or delegate of the domain name owner may
create new URI references.

2. They serve not just as a name but also as a means of accessing information describ-
ing the identified entity.

1 http://www.w3.org/DesignIssues/LinkedData.html.
2 http://www.doi.org/hb.html

http://www.w3.org/DesignIssues/LinkedData.html.
http://www.doi.org/hb.html


2.2 De-referencability

Any HTTP URI should be de-referencable, meaning that HTTP clients can look up the
URI using the HTTP protocol and retrieve a description of the resource that is identified
by the URI. This applies to URIs that are used to identify classic HTML documents,
as well as URIs that are used in the Linked Data context to identify real-world objects
and abstract concepts. Descriptions of resources are embodied in the form of Web doc-
uments. Descriptions that are intended to be read by humans are often represented as
HTML. Descriptions that are intended for consumption by machines are represented
as RDF data. Where URIs identify real-world objects, it is essential to not confuse the
objects themselves with the Web documents that describe them. It is therefore common
practice to use different URIs to identify the real-world object and the document that
describes it, in order to be unambiguous. This practice allows separate statements to be
made about an object and about a document that describes that object. For example, the
creation year of a painting may be rather different to the creation year of an article about
this painting. Being able to distinguish the two through use of different URIs is critical
to the consistency of the Web of Data.

The Web is intended to be an information space that may be used by humans as
well as by machines. Both should be able to retrieve representations of resources in a
form that meets their needs, such as HTML for humans and RDF for machines. This
can be achieved using an HTTP mechanism called content negotiation [43]. The basic
idea of content negotiation is that HTTP clients send HTTP headers with each request
to indicate what kinds of documents they prefer. Servers can inspect these headers and
select an appropriate response. If the headers indicate that the client prefers HTML then
the server will respond by sending an HTML document If the client prefers RDF, then
the server will send the client an RDF document.

There are two different strategies to make URIs that identify real-world objects de-
referencable [136]. Both strategies ensure that objects and the documents that describe
them are not confused and that humans as well as machines can retrieve appropriate
representations.

303 URIs. Real-world objects can not be transmitted over the wire using the HTTP
protocol. Thus, it is also not possible to directly de-reference URIs that identify real-
world objects. Therefore, in the 303 URI strategy, instead of sending the object itself
over the network, the server responds to the client with the HTTP response code 303
See Other and the URI of a Web document which describes the real-world object.
This is called a 303 redirect. In a second step, the client de-references this new URI and
retrieves a Web document describing the real-world object.

Hash URIs. A widespread criticism of the 303 URI strategy is that it requires two HTTP
requests to retrieve a single description of a real-world object. One option for avoiding
these two requests is provided by the hash URI strategy. The hash URI strategy builds
on the characteristic that URIs may contain a special part that is separated from the base
part of the URI by a hash symbol (#). This special part is called the fragment identifier.
When a client wants to retrieve a hash URI the HTTP protocol requires the fragment
part to be stripped off before requesting the URI from the server. This means a URI that



includes a hash cannot be retrieved directly, and therefore does not necessarily identify
a Web document. This enables such URIs to be used to identify real-world objects and
abstract concepts, without creating ambiguity [136].

Both approaches have their advantages and disadvantages. Section 4.4. of the
W3C Interest Group Note Cool URIs for the Semantic Web compares the two ap-
proaches [136]: Hash URIs have the advantage of reducing the number of necessary
HTTP round-trips, which in turn reduces access latency. The downside of the hash URI
approach is that the descriptions of all resources that share the same non-fragment URI
part are always returned to the client together, irrespective of whether the client is inter-
ested in only one URI or all. If these descriptions consist of a large number of triples,
the hash URI approach can lead to large amounts of data being unnecessarily transmit-
ted to the client. 303 URIs, on the other hand, are very flexible because the redirection
target can be configured separately for each resource. There could be one describing
document for each resource, or one large document for all of them, or any combination
in between. It is also possible to change the policy later on.

2.3 RDF Data Model

The RDF data model [1] represents information as sets of statements, which can be
visualized as node-and-arc-labeled directed graphs. The data model is designed for the
integrated representation of information that originates from multiple sources, is hetero-
geneously structured, and is represented using different schemata. RDF can be viewed
as a lingua franca, capable of moderating between other data models that are used on
the Web.

In RDF, information is represented in statements, called RDF triples. The three
parts of each triple are called its subject, predicate, and object. A triple mimics the
basic structure of a simple sentence, such as for example:

Burkhard Jung is the mayor of Leipzig
(subject) (predicate) (object)

The following is the formal definition of RDF triples as it can be found in the W3C
RDF standard [1].

Definition 1 (RDF Triple). Assume there are pairwise disjoint infinite sets I, B, and
L representing IRIs, blank nodes, and RDF literals, respectively. A triple (v1, v2, v3) ∈
(I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple. In this tuple, v1 is the subject, v2 the
predicate and v3 the object. We denote the union I ∪ B ∪ L by T called RDF terms.

The main idea is to use IRIs as identifiers for entities in the subject, predicate and
object positions in a triple. Data values can be represented in the object position as
literals. Furthermore, the RDF data model also allows in subject and object positions
the use of identifiers for unnamed entities (called blank nodes), which are not globally
unique and can thus only be referenced locally. However, the use of blank nodes is
discouraged in the Linked Data context as we discuss below. Our example fact sentence
about Leipzig’s mayor would now look as follows:



<http://leipzig.de/id>
<http://example.org/p/hasMayor>

<http://Burkhard-Jung.de/id> .
(subject) (predicate) (object)

This example shows, that IRIs used within a triple can originate from different
namespaces thus effectively facilitating the mixing and mashing of different RDF vo-
cabularies and entities from different Linked Data knowledge bases. A triple having
identifiers from different knowledge bases at subject and object position can be also
viewed as an typed link between the entities identified by subject and object. The pred-
icate then identifies the type of link. If we combine different triples we obtain an RDF
graph.

Definition 2 (RDF Graph). A finite set of RDF triples is called RDF graph. The RDF
graph itself represents an resource, which is located at a certain location on the Web
and thus has an associated IRI, the graph IRI.

An example of an RDF graph is depicted in Figure 3. Each unique subject or object
contained in the graph is visualized as a node (i.e. oval for resources and rectangle
for literals). Predicates are visualized as labeled arcs connecting the respective nodes.
There are a number of synonyms being used for RDF graphs, all meaning essentially
the same but stressing different aspects of an RDF graph, such as RDF document (file
perspective), knowledge base (collection of facts), vocabulary (shared terminology),
ontology (shared logical conceptualization).

Fig. 3: Example RDF graph containing 9 triples describing the city of Leipzig and its
mayor.

Problematic RDF features in the Linked Data Context Besides the features mentioned
above, the RDF Recommendation [1] also specifies some other features. In order to
make it easier for clients to consume data only the subset of the RDF data model de-
scribed above should be used. In particular, the following features are problematic when
publishing RDF as Linked Data:



– RDF reification (for making statements about statements) should be avoided if pos-
sible, as reified statements are rather cumbersome to query with the SPARQL query
language. In many cases using reification to publish metadata about individual RDF
statements can be avoided by attaching the respective metadata to the RDF docu-
ment containing the relevant triples.

– RDF collections and RDF containers are also problematic if the data needs to be
queried with SPARQL. Therefore, in cases where the relative ordering of items
in a set is not significant, the use of multiple triples with the same predicate is
recommended.

– The scope of blank nodes is limited to the document in which they appear, meaning
it is not possible to create links to them from external documents. In addition, it
is more difficult to merge data from different sources when blank nodes are used,
as there is no URI to serve as a common key. Therefore, all resources in a data set
should be named using IRI references.

2.4 RDF serializations

The initial official W3C RDF standard [1] comprised a serialization of the RDF data
model in XML called RDF/XML. Its rationale was to integrate RDF with the existing
XML standard, so it could be used smoothly in conjunction with the existing XML
technology landscape. Unfortunately, RDF/XML turned out to be rather difficult to un-
derstand for the majority of potential users, since it requires to be familiar with two
data models (i.e. the tree-oriented XML data model as well as the statement oriented
RDF datamodel) and interactions between them, since RDF statements are represented
in XML. As a consequence, with N-Triples, Turtle and N3 a family of alternative text-
based RDF serializations was developed, whose members have the same origin, but
balance differently between readability for humans and machines. Later in 2009, RDFa
(RDF Annotations, [2]) was standardized by the W3C in order to simplify the inte-
gration of HTML and RDF and to allow the joint representation of structured and un-
structured content within a single source HTML document. Another RDF serializa-
tion, which is particularly beneficial in the context of JavaScript web applications and
mashups is the serialization of RDF in JSON. In the sequel we present each of these
RDF serializations in some more detail. Figure 5 presents an example serialized in the
most popular serializations.

N-Triples. This serialization format was developed specifically for RDF graphs. The
goal was to create a serialization format which is very simple. N-Triples are easy to
parse and generate by software. An N-Triples document consists of a set of triples,
which are separated ‘.’ (lines 1-2, 3-4 and 5-6 in Figure 5 contain one triple each).
URI components of a triple are written in full and enclosed by ‘<’ and ‘>’. Literals are
enclosed in quotes, datatypes can be appended to a literal using ‘g (line 6), language
tags using ‘@’ (line 4). They are a subset of Notation 3 and Turtle but lack, for example,
shortcuts such as CURIEs. This makes them less readable and more difficult to create
manually. Another disadvantage is that N-triples use only the 7-bit US-ASCII character
encoding instead of UTF-8.



Fig. 4: Various textual RDF serializations as subsets of N3 (from [20]).

Turtle. Turtle (Terse RDF Triple Language) is a subset of, and compatible with, Nota-
tion 3 and a superset of the minimal N-Triples format (cf. Figure 4). The goal was to use
the essential parts of Notation 3 for the serialization of RDF models and omit everything
else. Turtle became part of the SPARQL query language for expressing graph patterns.
Compared to N-Triples, Turtle introduces a number of shortcuts, such as namespace
definitions (lines 1-5 in Figure 5), the semicolon as a separator between triples sharing
the same subject (which then does not have to be repeated in subsequent triples) and
the comma as a separator between triples sharing the same subject and predicate. Tur-
tle, just like Notation 3, is human-readable, and can handle the "%" character in URIs
(required for encoding special characters) as well as IRIs due to its UTF-8 encoding.

Notation 3. N3 (Notation 3) was devised by Tim Berners-Lee and developed for the
purpose of serializing RDF. The main aim was to create a very human-readable serial-
ization. Hence, an RDF model serialized in N3 is much more compact than the same
model in RDF/XML but still allows a great deal of expressiveness even going beyond
the RDF data model in some aspects. Since, the encoding for N3 files is UTF-8 the use
of IRIs does not pose a problem.

RDF/XML. The RDF/XML syntax [97] is standardized by the W3C and is widely used
to publish Linked Data on the Web. However, the syntax is also viewed as difficult



for humans to read and write, and therefore consideration should be given to using
other serializations in data management and curation workflows that involve human
intervention, and to the provision of alternative serializations for consumers who may
wish to eyeball the data. The MIME type that should be used for RDF/XML within
HTTP content negotiation is application/rdf+xml.

RDFa. RDF in Attributes (RDFa, [2]) was developed for embedding RDF into XHTML
pages. Since it is an extension to the XML based XHTML, UTF-8 and UTF-16 are
used for encoding. The "%" character for URIs in triples can be used because RDFa
tags are not used for a part of a RDF statement. Thus IRIs are usable, too. Because
RDFa is embedded in XHTML, the overhead is higher compared to other serialization
technologies and also reduces the readability. The basic idea of RDFa is enable an RDFa
processor to extract RDF statements from an RDFa enriched HTML document. This is
achieved by defining the scope of a certain resource description, for example, using the
‘about’ attribute (cf. line 10 in Figure 5). Within this scope, triples can now be extracted
from links having an additional ‘rel’ attribute (line 13) or other tags having a ‘property
attribute’ (lines 11 and 14).

JSON-LD. JavaScript Object Notation (JSON) was developed for easy data interchange
between applications. JSON, although carrying JavaScript in its name and being a sub-
set of JavaScript, meanwhile became a language independent format which can be used
for exchanging all kinds of data structures and is widely supported in different program-
ming languages. Compared to XML, JSON-LD requires less overhead with regard to
parsing and serializing. JSON-LD has been developed by the JSON for Linking Data
Community Group and been transferred to the RDF Working Group for review, im-
provement, and publication along the Recommendation track. JSON-LD’s design goals
are simplicity, compatibility, expressiveness, terseness, zero edits and one-pass pro-
cessing. As a result, JSON-LD documents are basically standard attribute-value JSON
documents with an additional context section (lines 2-7 in Figure 5) establishing map-
pings to RDF vocabularies. Text in JSON and, thus, also RDF resource identifiers are
encoded in Unicode and hence can contain IRIs.



N-Triples
1 <http://dbpedia.org/resource/Leipzig> <http://dbpedia.org/property/hasMayor>
2 <http://dbpedia.org/resource/Burkhard_Jung > .
3 <http://dbpedia.org/resource/Leipzig> <http://www.w3.org/2000/01/rdf-schema#label>
4 "Leipzig"@de .
5 <http://dbpedia.org/resource/Leipzig> <http://www.w3.org/2003/01/geo/wgs84_pos#lat>
6 "51.333332"^^<http://www.w3.org/2001/XMLSchema#float> .

Turtle
1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2 @prefix rdfs="http://www.w3.org/2000/01/rdf-schema#> .
3 @prefix dbp="http://dbpedia.org/resource/> .
4 @prefix dbpp="http://dbpedia.org/property/> .
5 @prefix geo="http://www.w3.org/2003/01/geo/wgs84_pos#> .
6

7 dbp:Leipzig dbpp:hasMayor dbp:Burkhard_Jung ;
8 rdfs:label "Leipzig"@de ;
9 geo:lat "51.333332"^^xsd:float .

RDF/XML
1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4 xmlns:dbpp="http://dbpedia.org/property/"
5 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
6 <rdf:Description rdf:about="http://dbpedia.org/resource/Leipzig">
7 <property:hasMayor rdf:resource="http://dbpedia.org/resource/Burkhard_Jung" />
8 <rdfs:label xml:lang="de">Leipzig </rdfs:label>
9 <geo:lat rdf:datatype="http://www.w3.org/2001/XMLSchema#float">51.3333</geo:lat>

10 </rdf:Description >
11 </rdf:RDF>

RDFa
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
3 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
4 <html version="XHTML+RDFa 1.0" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml"
5 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
6 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
7 xmlns:dbpp="http://dbpedia.org/property/"
8 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
9 <head><title>Leipzig </title></head>

10 <body about="http://dbpedia.org/resource/Leipzig">
11 <h1 property="rdfs:label" xml:lang="de">Leipzig </h1>
12 <p>Leipzig is a city in Germany. Leipzig’s mayor is
13 <a href="Burkhard_Jung" rel="dbpp:hasMayor">Burkhard Jung</a>. It is located
14 at latitude <span property="geo:lat" datatype="xsd:float">51.3333</span>.</p>
15 </body>
16 </html>

JSON-LD
1 {
2 "@context": {
3 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
4 "hasMayor": { "@id": "http://dbpedia.org/property/hasMayor", "@type": "@id" },
5 "Person": "http://xmlns.com/foaf/0.1/Person",
6 "lat": "http://www.w3.org/2003/01/geo/wgs84_pos#lat"
7 },
8 "@id": "http://dbpedia.org/resource/Leipzig",
9 "rdfs:label": "Leipzig",

10 "hasMayor": "http://dbpedia.org/resource/Burkhard_Jung",
11 "lat": { "@value": "51.3333", "@type": "http://www.w3.org/2001/XMLSchema#float"
12 }

Fig. 5: Different RDF serializations of three triples from Figure 3.



3 Extraction

Information represented in unstructured form or adhering to a different structured repre-
sentation formalism must be mapped to the RDF data model in order to be used within
the Linked Data life-cycle. In this section, we give an overview on some relevant ap-
proaches for extracting RDF from unstructured and structured sources.

3.1 From Unstructured Sources

The extraction of structured information from unstructured data sources (especially
text) has been a central pillar of natural language processing (NLP) and Informa-
tion Extraction (IE) for several decades. With respect to the extraction of RDF data
from unstructured data, three sub-disciplines of NLP play a central role: Named En-
tity Recognition (NER) for the extraction of entity labels from text, Keyword/Keyphrase
Extraction (KE) for the recognition of central topics and Relationship Extraction (RE,
also called relation mining) for mining the properties which link the entities and key-
words described in the data source. A noticeable additional task during the migration
of these techniques to Linked Data is the extraction of suitable IRIs for the discov-
ered entities and relations, a requirement that was not needed before. In this section,
we give a short overview of approaches that implement the required NLP functionality.
Then we present a framework that applies machine learning to boost the quality of the
RDF extraction from unstructured data by merging the results of NLP tools. As an or-
thogonal activity, we want to mention the NLP2RDF project [57], which provides RDF
serialisation for NLP tools solving the above mentioned tasks.

Named Entity Recognition. The goal of NER is to discover instances of a prede-
fined classes of entities (e.g., persons, locations, organizations) in text. NER tools and
frameworks implement a broad spectrum of approaches, which can be subdivided into
three main categories: dictionary-based, rule-based, and machine-learning approaches.
The first systems for NER implemented dictionary-based approaches, which relied on
a list of NEs and tried to identify these in text [156,5]. Following work that showed that
these approaches did not perform well for NER tasks such as recognizing proper names
[135], rule-based approaches were introduced. These approaches rely on hand-crafted
rules [32,145] to recognize NEs. Most rule-based approaches combine dictionary and
rule-based algorithms to extend the list of known entities. Nowadays, handcrafted rules
for recognizing NEs are usually implemented when no training examples are available
for the domain or language to process [105].

When training examples are available, the methods of choice are borrowed from
supervised machine learning. Approaches such as Hidden Markov Models [167], Max-
imum Entropy Models [35] and Conditional Random Fields [44] have been applied
to the NER task. Due to scarcity of large training corpora as necessitated by machine
learning approaches, semi-supervised [124,104] and unsupervised machine learning ap-
proaches [106,40] have also been used for extracting NER from text. [104] gives an
exhaustive overview of approaches for NER.



Keyphrase Extraction. Keyphrases/Keywords are multi-word units (MWUs) which
capture the main topics of a document. The automatic detection of such MWUs has
been an important task of NLP for decades but due to the very ambiguous defini-
tion of what an appropriate keyword should be, current approaches to the extraction
of keyphrases still display low F-scores [74]. From the point of view of the Semantic
Web, the extraction of keyphrases is a very similar task to that of finding tags for a given
document. Several categories of approaches have been adapted to enable KE, of which
some originate from research areas such as summarization and information retrieval
(IR). Still, according to [73], the majority of the approaches to KE implement combina-
tions of statistical, rule-based or heuristic methods [47,119] on mostly document [96],
keyphrase [148] or term cohesion features [123]. [74] gives a overview of current tools
for KE.

Relation Extraction. The extraction of relations from unstructured data builds upon
work for NER and KE to determine the entities between which relations might exist.
Most tools for RE rely on pattern-based approaches. Some early work on pattern extrac-
tion relied on supervised machine learning [50]. Yet, such approaches demanded large
amount of training data, making them difficult to adapt to new relations. The subse-
quent generation of approaches to RE aimed at bootstrapping patterns based on a small
number of input patterns and instances. For example, [28] presents the Dual Iterative
Pattern Relation Expansion (DIPRE) and applies it to the detection of relations between
authors and titles of books. This approach relies on a small set of seed patterns to max-
imize the precision of the patterns for a given relation while minimizing their error rate
of the same patterns. Snowball [3] extends DIPRE by a new approach to the generation
of seed tuples. Newer approaches aim to either collect redundancy information from the
whole Web [122] or Wikipedia [157,163] in an unsupervised manner or to use linguistic
analysis [52,118] to harvest generic patterns for relations.

URI Disambiguation. One important problem for the integration of NER tools for
Linked Data is the retrieval of IRIs for the entities to be manipulated. In most cases,
the URIs can be extracted from generic knowledge bases such as DBpedia [103,82]
by comparing the label found in the input data with the rdfs:label or dc:title of
the entities found in the knowledge base. Furthermore, information such as the type of
NEs can be used to filter the retrieved IRIs via a comparison of the rdfs:label of
the rdf:type of the URIs with the name of class of the NEs. Still in many cases (e.g.,
Leipzig, Paris), several entities might bear the same label.

Unsupervised Extraction Example: The FOX Framework.

Several frameworks have been developed to implement the functionality above for the
Data Web including OpenCalais3 and Alchemy4. Yet, these tools rely mostly on one
approach to perform the different tasks at hand. In this section, we present the FOX

3 http://www.opencalais.com
4 http://www.alchemyapi.com



(Federated knOwledge eXtraction) framework5, which makes use of the diversity of
the algorithms available for NER, KE and RE to generate high-quality RDF.

The architecture of FOX consists of three main layers as shown in Figure 6. The
machine learning layer implements interfaces for accommodating ensemble learning
techniques such as simple veto algorithms but also neural networks. It consists of two
main modules. The training module allows to load training data so as to enable FOX
to learn the best combination of tools and categories for achieving superior recall and
precision on the input training data. Depending on the training algorithm used, the user
can choose to tune the system for either precision or recall. When using neural networks
for example, the user can decide to apply a higher threshold for the output neurons,
thus improving the precision but potentially limiting the recall. The prediction module
allows to run FOX by loading the result of a training session and processing the input
data according to the tool-category combination learned during the training phase. Note
that the same learning approach can by applied to NER, KE, RE and URI lookup as
they call all be modelled as classification tasks.
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Fig. 6: FOX Architecture

The second layer of FOX is the controller, which coordinates the access to the
modules that carry out the language processing. The controller is aware of each of the
modules in its backend and carries out the initialisation of these modules once FOX is

5 http://aksw.org/projects/fox



started. Furthermore, it collects the results from the backend modules and invokes the
results of a training instance to merge the results of these tools.

The final layer of FOX is the tool layer, wherein all NLP tools and services inte-
grated in FOX can be found. It is important to notice that the tools per se are not trained
during the learning phase of FOX. Rather, we learn of the models already loaded in the
tools to allow for the best prediction of named entities in a given domain.

The ensemble learning implemented by FOX was evaluated in the task of NER by
integrating three NER tools (Stanford NER, Illinois NER and a commercial tool) and
shown to lead to an improvement of more than 13% in F-Score (see Figure 7) when
combining three tools, therewith even outperforming commercial systems.

Stanford NER Illinois NER Commecial To FOX
Precision 67.41 69.02 71.41 90.38
Recall 86.32 87.57 83.24 91.16
F-Score 75.70 77.20 76.87 90.77
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Fig. 7: Comparison of precision, recall and F-score of the best runs of FOX and its
components on NER.

3.2 From Structured Sources

Structured knowledge, e.g. relational databases and XML, is the backbone of many
(web) applications. Extracting or converting this knowledge to RDF is a long-standing
research goal in the Semantic Web community. A conversion to RDF allows to integrate
the data with other sources and perform queries over it. In this lecture, we focus on the
conversion of relational databases to RDF (see Figure 8). In the first part, we summarize
material from a recent relational database to RDF (RDB2RDF) project report. After
that, we describe the mapping language R2RML, which is a language for expressing
database to RDF conversion mappings. While we focus on relational date, we also want
to note that extraction from CSV files is also highly important as illustrated in use cases
in the financial [95] and health sector [164,165].

Triplify and RDB2RDF Survey report The table displayed in Figure 9 is taken from
the Triplify WWW paper [8]. The survey report [134] furthermore contained a chart(see
Figure 10) showing the reference framework for classifying the approaches and an ex-
tensive table classifying the approaches (see Figure 11). Another recent survey is [143].



Fig. 8: Illustration of RDB to RDF conversion.
Source: http://www.w3.org/2001/sw/rdb2rdf/use-cases/.

The following criteria can be extracted:

Automation Degree. Degree of mapping creation automation.
Values: Manual, Automatic, Semi-Automatic.

Domain or Database Semantics Driven. Some approaches are tailored to model a do-
main, sometimes with the help of existing ontologies, while others attempt to extract
domain information primarily from the given database schema with few other resources
used (domain or database semantics-driven). The latter often results in a table-to-class,
column-to-predicate mapping.Some approaches also use a (semi) automatic approach

Fig. 9: Table comparing relevant approaches from [8].

http://www.w3.org/2001/sw/rdb2rdf/use-cases/


Fig. 10: Reference framework by [134].

based on the database, but allow manual customization to model domain semantics.
Values: Domain, DB (database), DB+M (database and later manual customisation),
Both (Domain and DB)

Access Paradigm. Resulting access paradigm (ETL [extract transform load], Linked
Data, SPARQL access). Note that the access paradigm also determines whether the
resulting RDF model updates automatically. ETL means a one time conversion, while
Linked Data and SPARQL always process queries versus the original database.
Values: SPARQL, ETL, LD

Mapping Language. The used mapping language as an important factor for reusability
and initial learning cost.
Values: Visual Tool, intern (internal self-designed language), FOL, n/a (no information
available), R2O, XSLT, D2RQ, proprietary, SQL

Domain reliance. Domain reliance (general or domain-dependent): requiring a pre-
defined ontology is a clear indicator of domain dependency.
Values: Dependent, General

Type. Although not used in the table the paper discusses four different classes:
Values: Alignment, Database Mining, Integration, Languages/Servers

R2RML - RDB to RDF Mapping Language The R2RML W3C recommendation6

specifies an RDF notation for mapping relational tables, views or queries into RDF.
The primary area of applicability of this is extracting RDF from relational databases,
but in special cases R2RML could lend itself to on-the-fly translation of SPARQL into
SQL or to converting RDF data to a relational form. The latter application is not the

6 http://www.w3.org/TR/r2rml/

http://www.w3.org/TR/r2rml/


Fig. 11: Comparison of approaches from [134].



primary intended use of R2RML but may be desirable for importing linked data into re-
lational stores. This is possible if the constituent mappings and underlying SQL objects
constitute updateable views in the SQL sense.

Data integration is often mentioned as a motivating use case for the adoption of
RDF. This integration will very often be between relational databases which have logi-
cal entities in common, each with its local schema and identifiers.Thus, we expect to see
relational to RDF mapping use cases involving the possibility of a triple coming from
multiple sources. This does not present any problem if RDF is being extracted but does
lead to complications if SPARQL queries are mapped into SQL. In specific, one will
end up with potentially very long queries consisting of joins of unions. Most of the joins
between terms of the unions will often be provably empty and can thus be optimized
away. This capability however requires the mapping language to be able to express
metadata about mappings, i.e. that IRIs coming from one place are always disjoint from
IRIs coming from another place. Without such metadata optimizing SPARQL to SQL
translation is not possible, which will significantly limit the possibility of querying col-
lections of SQL databases through a SPARQL end point without ETL-ing the mapped
RDF into an RDF store.

RDF is emerging as a format for interoperable data publishing. This does not entail
that RDF were preferable as a data warehousing model. Besides, for large warehouses,
RDF is not cost competitive with relational technology, even though projects such as
LOD2 and LDBC expect to narrow this gap (see, e.g., [101,102] for recent SPARQL
benchmarks). Thus it follows that on the fly mapping of SPARQL to SQL will be im-
portant. Regardless of the relative cost or performance of relational or RDF technology,
it is not a feasible proposition to convert relational warehouses to RDF in general, rather
existing investments must be protected and reused. Due to these reasons, R2RML will
have to evolve in the direction of facilitating querying of federated relational resources.

Supervised Extraction Example: Sparqlify The challenges encountered with large
scale relational data sources LinkedGeoData [12,144] indicate that ETL style ap-
proaches based on the conversion of all underlying data to RDF have severe deficien-
cies. For instance, the RDF conversion process is very time consuming for large-scale,
crowdsourced data. Furthermore, changes in data modelling require many changes in
the extracted RDF data or the creation of a completely new dump. In summary, the
ETL approach is not sufficiently flexible for very large and frequently changing data. It
seems preferable to establish virtual RDF views over the existing relational database. In
contrast to other tools, such as D2R and Virtuoso RDF views, Sparqlify converts each
SPARQL query to a single SQL query. This allows all optimisations of the underlying
database to be applied and can lead to better scalability.

Figure 12 shows the query rewriting workflow in Sparqlify. The rationale of Spar-
qlify is to leave the schema of the underlying relational database schema unmodified
and define RDF views over it. SPARQL queries can then be written against those views,
which are expressed in the Sparqlify-ML (mapping language). Sparqlify-ML is easy to
learn for users, who are experienced in SPARQL and SQL and more compact than other
syntactic variants such as R2RML. The left part of Figure 12 shows all steps, which are
performed to answer a query. First, the query is converted into an algebra expression.



Fig. 12: The Sparqlify concepts and query rewriting workflow.

This expression is subsequently converted to a normal form. Given the query patterns,
relevant Sparqlify-ML views need to be detected. After this is done, the algebra expres-
sion is rewritten to include those relevant views. In a next step, optimisations on the
algebra expression are performed to improve efficiency. Finally, this algebra expression
can be transformed to an SQL algebra expression. For accomplishing this, we define
a general relational algebra for RDB-to-RDF mappings. The SQL query, which was
obtained, is executed against the relational database. Using the defined mappings, the
SQL result set returned by the relational database can be converted to a SPARQL result
set.

All of the above steps are explained in detail throughout the next sections.The main
contribution of the Sparqlify project is a formalization, which goes beyond previous
work by being capable to push the complete query execution using a single SQL query
into the DBMS.



4 Authoring with Semantic Wikis

Semantic Wikis are an extension to conventional, text-based Wikis. While in conven-
tional Wikis pages are stored as blocks of text using a special Wiki markup for structur-
ing the display of the text and adding links to other pages, semantic Wikis aim at adding
rich structure to the information itself. To this end, two initially orthogonal approaches
have been used: a) extending the markup language to allow semantic annotations and
links with meaning or b) building the Wiki software directly with structured information
in mind. Nowadays, both approaches have somewhat converged, for instance Seman-
tic MediaWiki [76] also provides forms for entering structured data (see Figure 13).
Characteristics of both approaches are summarized in Table 2 for the two prototypical
representatives of both approaches, i.e. Semantic MediaWiki and OntoWiki.

Semantic MediaWiki OntoWiki

Managed entities Articles Resources
Editing Wiki markup Forms
Atomic element Text blob Statement

Table 2: Conceptual differences between Semantic MediaWiki and OntoWiki.

Extending Wikis with Semantic Markup. The benefit of a Wiki system comes from
the amount of interlinking between Wiki pages. Those links clearly state a relationship
between the linked-to and the linking page. However, in conventional Wiki systems this
relationship cannot be made explicit. Semantic Wiki systems therefore add a means to
specify typed relations by extending the Wiki markup with semantic (i.e. typed) links.
Once in place, those links form a knowledge base underlying the Wiki which can be
used to improve search, browsing or automatically generated lists and category pages.
Examples of approaches for extending Wikis with semantic markup can be found in
[76,137,14,121,142]. They represent a straightforward combination of existing Wiki
systems and the Semantic Web knowledge representation paradigms. Yet, we see the
following obstacles:

Usability: The main advantage of Wiki systems is their unbeatable usability. Adding
more and more syntactic possibilities counteracts ease of use for editors.

Redundancy: To allow the answering of real-time queries to the knowledge base, state-
ments have to be additionally kept in a triple store. This introduces a redundancy,
which complicates the implementation.

Evolution: As a result of storing information in both Wiki texts and triple store, sup-
porting evolution of knowledge is difficult.

Wikis for Editing Structured Data. In contrast to text-based systems, Wikis for struc-
tured data – also called Data Wikis – are built on a structured model of the data being
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Fig. 13: Comparison of Semantic MediaWiki and OntoWiki GUI building blocks.



edited. The Wiki software can be used to add instances according to the schema or (in
some systems) edit the schema itself. One of those systems is OntoWiki7 [9] which
bases its data model on RDF. This way, both schema and instance data are represented
using the same low-level model (i.e. statements) and can therefore be handled identi-
cally by the Wiki.
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Fig. 14: Overview of OntoWiki’s architecture with extension API and Zend web frame-
work (modified according to [54]).

4.1 OntoWiki - a Semantic Data Wiki

OntoWiki started as an RDF-based data wiki with emphasis on collaboration but has
meanwhile evolved into a comprehensive framework for developing Semantic Web ap-
plications [54]. This involved not only the development of a sophisticated extension
interface allowing for a wide range of customizations but also the addition of several ac-
cess and consumption interfaces allowing OntoWiki installations to play both a provider
and a consumer role in the emerging Web of Data.

OntoWiki is inspired by classical Wiki systems, its design, however, (as mentioned
above) is independent and complementary to conventional Wiki technologies. In con-
trast to other semantic Wiki approaches, in OntoWiki text editing and knowledge en-
gineering (i. e. working with structured knowledge bases) are not mixed. Instead, On-
toWiki directly applies the Wiki paradigm of “making it easy to correct mistakes, rather
than making it hard to make them” [89] to collaborative management of structured
knowledge. This paradigm is achieved by interpreting knowledge bases as information
maps where every node is represented visually and interlinked to related resources.

7 Available at: http://ontowiki.net

http://ontowiki.net


Furthermore, it is possible to enhance the knowledge schema gradually as well as the
related instance data agreeing on it. As a result, the following requirements and corre-
sponding features characterize OntoWiki:

Intuitive display and editing of instance data should be provided in generic ways, yet
enabling domain-specific presentation of knowledge.

Semantic views allow the generation of different views and aggregations of the knowl-
edge base.

Versioning and evolution provides the opportunity to track, review and roll-back
changes selectively.

Semantic search facilitates easy-to-use full-text searches on all literal data, search re-
sults can be filtered and sorted (using semantic relations).

Community support enables discussions about small information chunks. Users are
encouraged to vote about distinct facts or prospective changes.

Online statistics interactively measures the popularity of content and activity of users.
Semantic syndication supports the distribution of information and their integration

into desktop applications.

OntoWiki enables the easy creation of highly structured content by distributed com-
munities. The following points summarize some limitations and weaknesses of On-
toWiki and thus characterize the application domain:

Environment: OntoWiki is a Web application and presumes all collaborators to work
in a Web environment, possibly distributed.

Usage Scenario: OntoWiki focuses on knowledge engineering projects where a single,
precise usage scenario is either initially (yet) unknown or not (easily) definable.

Reasoning: Application of reasoning services was (initially) not the primary focus.

4.2 Generic and Domain-specific Views

OntoWiki can be used as a tool for presenting, authoring and managing knowledge
bases adhering to the RDF data model. As such, it provides generic methods and views,
independent of the domain concerned. Two generic views included in OntoWiki are the
resource view and the list view. While the former is generally used for displaying all
known information about a resource, the latter can present a set of resources, typically
instances of a certain concept. That concept must not necessarily be explicitly defined as
rdfs:Class or owl:Class in the knowledge base. Via its faceted browsing, OntoWiki
allows the construction of complex concept definitions, with a pre-defined class as a
starting point by means of property value restrictions. These two views are sufficient for
browsing and editing all information contained in a knowledge base in a generic way.
For domain-specific use cases, OntoWiki provides an easy-to-use extension interface
that enables the integration of custom components. By providing such a custom view, it
is even possible to hide completely the fact that an RDF knowledge base is worked on.
This permits OntoWiki to be used as a data-entry frontend for users with a less profound
knowledge of Semantic Web technologies.



4.3 Workflow

With the use of RDFS [27] and OWL [125] as ontology languages, resource defini-
tion is divisible into different layers: a terminology box for conceptual information (i. e.
classes and properties) and an assertion box for entities using the concepts defined (i. e.
instances). There are characteristics of RDF which, for end users, are not easy to com-
prehend (e. g. classes can be defined as instances of owl:Class). OntoWiki’s user in-
terface, therefore, provides elements for these two layers, simultaneously increasing us-
ability and improving a user’s comprehension for the structure of the data. After starting
and logging in into OntoWiki with registered user credentials, it is possible to select one
of the existing ontologies. The user is then presented with general information about the
ontology (i. e. all statements expressed about the knowledge base as a resource) and a
list of defined classes, as part of the conceptual layer.

After starting and logging in into OntoWiki with registered user credentials, it is
possible to select one of the existing knowledge bases. The user is then presented with
general information about the ontology (i. e. all statements expressed about the knowl-
edge base as a resource) and a list of defined classes, as part of the conceptual layer. By
selecting one of these classes, the user obtains a list of the class’ instances. OntoWiki
applies basic rdfs:subClassOf reasoning automatically. After selecting an instance
from the list – or alternatively creating a new one – it is possible to manage (i. e. insert,
edit and update) information in the details view.OntoWiki focuses primarily on the as-
sertion layer, but also provides ways to manage resources on the conceptual layer. By
enabling the visualization of schema elements, called System Classes in the OntoWiki
nomenclature, conceptional resources can be managed in a similar fashion as instance
data.

4.4 Authoring

Semantic content in OntoWiki is represented as resource descriptions. Following the
RDF data model representing one of the foundations of the Semantic Web vision, re-
source descriptions are represented (at the lowest level) in the form of statements. Each
of these statements (or triples) consist of a subject which identifies a resource as well as
a predicate and an object which together represent data about said resource in a fashion
reminiscent of key-value pairs. By means of RDFa [2], these statements are retained in
the HTML view (i.e. user interface) part and are thus accessible to client-side techniques
like JavaScript.

Authoring of such content is based on said client-side representation by employ-
ing the RDFauthor approach [147]: views are declared in terms of the model language
(RDF) which allows the underlying model be restored. Based on this model, a user
interface can be generated with the model being providing all the domain knowledge
required to do so. The RDFauthor system provides an extensible set of authoring wid-
gets specialized for certain editing tasks. RDFauthor was also extended by adding ca-
pabilities for automatically translating literal object values between different languages.
Since the semantic context is known to the system, these translation functionality can
be bound to arbitrary characteristics of the data (e. g. to a certain property or a missing
language).



Fig. 15: OntoWiki views: (background) A tabular list view, which contains a filtered list
of resources highlighting some specific properties of those resources and (foreground)
a resource view which allows to tag and comment a specific resource as well as editing
all property values.

Versioning & Evolution. As outlined in the wiki principles, keeping track of all changes
is an important task in order to encourage user participation. OntoWiki applies this
concept to RDF-based knowledge engineering in that all changes are tracked on the
statement level [10]. These low-level changes can be grouped to reflect application-
and domain-specific tasks involving modifications to several statements as a single ver-
sioned item. Provenance information as well as other metadata (such as time, user or
context) of a particular changeset can be attached to each individual changeset. All
changes on the knowledge base can be easily reviewed and rolled-back if needed. The
loosely typed data model of RDF encourages continuous evolution and refinement of
knowledge bases. With EvoPat, OntoWiki supports this in a declarative, pattern-based
manner (cf. ??).

4.5 Access Interfaces

In addition to human-targeted graphical user interfaces, OntoWiki supports a number
of machine-accessible data interfaces. These are based on established Semantic Web



standards like SPARQL or accepted best practices like publication and consumption of
Linked Data.

SPARQL Endpoint. The SPARQL recommendation not only defines a query language
for RDF but also a protocol for sending queries to and receiving results from remote
endpoints8. OntoWiki implements this specification, allowing all resources managed in
an OntoWiki be queried over the Web. In fact, the aforementioned RDFauthor authoring
interface makes use of SPARQL to query for additional schema-related information,
treating OntoWiki as a remote endpoint in that case.

Linked Data. Each OntoWiki installation can be part of the emerging Linked Data Web.
According to the Linked Data publication principles (cf. section 2), OntoWiki makes all
resources accessible by its IRI (provided, the resource’s IRI is in the same namespace
as the OntoWiki instance). Furthermore, for each resource used in OntoWiki additional
triples can be fetches if the resource is de-referenceable.

Semantic Pingback. Pingback is an established notification system that gained wide
popularity in the blogsphere. With Semantic Pingback [146], OntoWiki adapts this idea
to Linked Data providing a notification mechanism for resource usage. If a Pingback-
enabled resource is mentioned (i. e. linked to) by another party, its pingback server is no-
tified of the usage. Provided, the Semantic Pingback extension is enabled all resources
used in OntoWiki are pinged automatically and all resources defined in OntoWiki are
Pingback-enabled.

4.6 Exploration Interfaces

For exploring semantic content, OntoWiki provides several exploration interfaces that
range from generic views over search interfaces to sophisticated querying capabilities
for more RDF-knowledgable users. The subsequent paragraphs give an overview of
each of them.

Knowledge base as an information map. The compromise between, on the one hand,
providing a generic user interface for arbitrary RDF knowledge bases and, on the other
hand, aiming at being as intuitive as possible is tackled by regarding knowledge bases
as information maps. Each node at the information map, i. e. RDF resource, is repre-
sented as a Web accessible page and interlinked to related digital resources. These Web
pages representing nodes in the information map are divided into three parts: a left side-
bar, a main content section and a right sidebar. The left sidebar offers the selection of
content to display in the main content section. Selection opportunities include the set of
available knowledge bases, a hierarchical browser and a full-text search.

Full-text search. The full-text search makes use of special indexes (mapped to propri-
etary extensions to the SPARQL syntax) if the underlying knowledge store provides
this feature, else, plain SPARQL string matching is used. In both cases, the resulting

8 http://www.w3.org/TR/rdf-sparql-protocol/
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SPARQL query is stored as an object which can later be modified (e. g. have its filter
clauses refined). Thus, full-text search is seamlessly integrated with faceted browsing
(see below).

Content specific browsing interfaces. For domain-specific use cases, OntoWiki pro-
vides an easy-to-use extension interface that enables the integration of custom compo-
nents. By providing such a custom view, it is even possible to hide completely the fact
that an RDF knowledge base is worked on. This permits OntoWiki to be used as a data-
entry frontend for users with a less profound knowledge of Semantic Web technologies.

Faceted-browsing. Via its faceted browsing, OntoWiki allows the construction of com-
plex concept definitions, with a pre-defined class as a starting point by means of prop-
erty value restrictions. These two views are sufficient for browsing and editing all in-
formation contained in a knowledge base in a generic way.

Query-builder. OntoWiki serves as a SPARQL endpoint, however, it quickly turned out
that formulating SPARQL queries is too tedious for end users. In order to simplify the
creation of queries, we developed the Visual Query Builder9 (VQB) as an OntoWiki
extension, which is implemented in JavaScript and communicates with the triple store
using the SPARQL language and protocol. VQB allows to visually create queries to the
stored knowledge base and supports domain experts with an intuitive visual representa-
tion of query and data. Developed queries can be stored and added via drag-and-drop to
the current query. This enables the reuse of existing queries as building blocks for more
complex ones.

4.7 Applications

Catalogous Professorum. The World Wide Web, as an ubiquitous medium for pub-
lication and exchange, already significantly influenced the way historians work: the
online availability of catalogs and bibliographies allows to efficiently search for content
relevant for a certain investigation; the increasing digitization of works from histori-
cal archives and libraries, in addition, enables historians to directly access historical
sources remotely. The capabilities of the Web as a medium for collaboration, however,
are only starting to be explored. Many, historical questions can only be answered by
combining information from different sources, from different researchers and organiza-
tions. Also, after original sources are analyzed, the derived information is often much
richer, than can be captured by simple keyword indexing. These factors pave the way for
the successful application of knowledge engineering techniques in historical research
communities.

In [130] we report about the application of an adaptive, semantics-based knowl-
edge engineering approach using OntoWiki for the development of a prosopographical
knowledge base. In prosopographical research, historians analyze common character-
istics of historical groups by studying statistically relevant quantities of individual bi-
ographies. Untraceable periods of biographies can be determined on the basis of such

9 http://aksw.org/Projects/OntoWiki/Extension/VQB
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accomplished analyses in combination with statistically examinations as well as pat-
terns of relationships between individuals and their activities.

In our case, researchers from the historical seminar at Universität Leipzig aimed
at creating a prosopographical knowledge base about the life and work of professors
in the 600 years history of Universität Leipzig ranging from the year 1409 till 2009
- the Catalogus Professorum Lipsiensis (CPL). In order to enable historians to collect,
structure and publish this prosopographical knowledge an ontological knowledge model
was developed and incrementally refined over a period of three years. The community
of historians working on the project was enabled to add information to the knowledge
base using an adapted version of OntoWiki. For the general public, a simplified user
interface10 is dynamically generated based on the content of the knowledge base. For
access and exploration of the knowledge base by other historians a number of access
interfaces was developed and deployed, such as a graphical SPARQL query builder, a
relationship finder and plain RDF and Linked Data interfaces. As a result, a group of
10 historians supported by a much larger group of volunteers and external contributors
collected information about 1,300 professors, 10,000 associated periods of life, 400
institutions and many more related entities.

The benefits of the developed knowledge engineering platform for historians are
twofold: Firstly, the collaboration between the participating historians has significantly
improved: The ontological structuring helped to quickly establish a common under-
standing of the domain. Collaborators within the project, peers in the historic commu-
nity as well as the general public were enabled to directly observe the progress, thus
facilitating peer-review, feedback and giving direct benefits to the contributors. Sec-
ondly, the ontological representation of the knowledge facilitated original historical in-
vestigations, such as historical social network analysis, professor appointment analysis
(e.g. with regard to the influence of cousin-hood or political influence) or the relation
between religion and university. The use of the developed model and knowledge en-
gineering techniques is easily transferable to other prosopographical research projects
and with adaptations to the ontology model to other historical research in general. In
the long term, the use of collaborative knowledge engineering in historian research
communities can facilitate the transition from largely individual-driven research (where
one historian investigates a certain research question solitarily) to more community-
oriented research (where many participants contribute pieces of information in order
to enlighten a larger research question). Also, this will improve the reusability of the
results of historic research, since knowledge represented in structured ways can be used
for previously not anticipated research questions.

OntoWiki Mobile. As comparatively powerful mobile computing devices are becom-
ing more common, mobile web applications have started gaining in popularity. An im-
portant feature of these applications is their ability to provide offline functionality with
local updates for later synchronization with a web server. The key problem here is the
reconciliation, i. e. the problem of potentially conflicting updates from disconnected
clients. Another problem current mobile application developers face is the plethora
of mobile application development platforms as well as the incompatibilities between
10 Available at: http://www.uni-leipzig.de/unigeschichte/professorenkatalog/
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them. Android (Google), iOS (Apple), Blackberry OS (RIM), WebOS (HP/Palm), Sym-
bian (Nokia) are popular and currently widely deployed platforms, with many more
proprietary ones being available as well. As a consequence of this fragmentation, real-
izing a special purpose application, which works with many or all of these platforms
is extremely time consuming and inefficient due to the large amount of duplicate work
required.

The W3C addressed this problem, by enriching HTML in its 5th revision with ac-
cess interfaces to local storage (beyond simple cookies) as well as a number of devices
and sensors commonly found on mobile devices (e. g. GPS, camera, compass etc.). We
argue, that in combination with semantic technologies these features can be used to re-
alize a general purpose, mobile collaboration platform, which can support the long tail
of mobile special interest applications, for which the development of individual tools
would not be (economically) feasible.

In [38] we present the OntoWiki Mobile approach realizing a mobile semantic col-
laboration platform based on the OntoWiki. It comprises specifically adopted user in-
terfaces for browsing, faceted navigation as well as authoring of knowledge bases. It al-
lows users to collect instance data and refine the structured knowledge bases on-the-go.
OntoWiki Mobile is implemented as an HTML5 web application, thus being completely
mobile device platform independent. In order to allow offline use in cases with restricted
network coverage (or in order to avoid roaming charges) it uses the novel HTML5 local
storage feature for replicating parts of the knowledge base on the mobile device. Hence,
a crucial part of OntoWiki Mobile is the advanced conflict resolution for RDF stores.
The approach is based on a combination of the EvoPat [131] method for data evolution
and ontology refactoring along with a versioning system inspired by distributed version
control systems like Git. OntoWiki Mobile is a generic, application domain agnostic
tool, which can be utilized in a wide range of very different usage scenarios ranging
from instance acquisition to browsing of semantic data on the go. Typical OntoWiki
Mobile usage scenarios are settings where users need to author and access semantically
structured information on the go or in settings where users are away from regular power
supply and restricted to light-weight equipment (e. g. scientific expeditions).

Semantics-based Requirements Engineering. Semantic interoperability, linked data,
and a shared conceptual foundation become increasingly important prerequisites in soft-
ware development projects that are characterized by spatial dispersion, large numbers
of stakeholders, and heterogeneous development tools. The SoftWiki OntoWiki exten-
sion [92] focuses specifically on semantic collaboration with respect to requirements
engineering. Potentially very large and spatially distributed groups of stakeholders, in-
cluding developers, experts, managers, and average users, shall be enabled to collect,
semantically enrich, classify, and aggregate software requirements. OntoWiki is used
to support collaboration as well as interlinking and exchange of requirements data. To
ensure a shared conceptual foundation and semantic interoperability, we developed the
SoftWiki Ontology for Requirements Engineering (SWORE) that defines core concepts
of requirement engineering and the way they are interrelated. For instance, the ontol-
ogy defines frequent relation types to describe requirements interdependencies such as
details, conflicts, related to, depends on, etc. The flexible SWORE design allows for



easy extension. Moreover, the requirements can be linked to external resources, such as
publicly available domain knowledge or company-specific policies. The whole process
is called semantification of requirements. It is envisioned as an evolutionary process:
The requirements are successively linked to each other and to further concepts in a
collaborative way, jointly by all stakeholders. Whenever a requirement is formulated,
reformulated, analyzed, or exchanged, it might be semantically enriched by the respec-
tive participant.



5 Linking

The fourth Linked Data Principle, i.e., “Include links to other URIs, so that they can
discover more things” (cf. section 2) is the most important Linked Data principle as it
enables the paradigm change from data silos to interoperable data distributed across the
Web. Furthermore, it plays a key role in important tasks such as cross-ontology ques-
tion answering [22,93], large-scale inferences [150,98] and data integration [94,19].
Yet, while the number of triples in Linked Data sources increases steadily and has sur-
passed 31 billions11, links between knowledge bases still constitute less than 5% of
these triples. The goal of linking is to tackle this sparseness so as to transform the Web
into a platform for data and information integration as well as for search and querying.

5.1 Link Discovery

Linking can be generally defined as connecting things that are somehow related. In the
context of Linked Data, the idea of linking is especially concerned with establishing
typed links between entities (i.e., classes, properties or instances) contained in knowl-
edge bases. Over the last years, several frameworks have been developed to address
the lack of typed links between the different knowledge bases on the Linked Data web.
Overall, two main categories of frameworks that aim to achieve this goal can be dif-
ferentiated. The first category implements ontology matching techniques and aims to
establish links between the ontologies underlying two data sources. The second and
more prominent category of approaches, dubbed instance matching approaches (also
called linking or link discovery approaches), aims to discover links between instances
contained in two data sources. It is important to notice that while ontology and instance
matching are similar to schema matching [127,126] and record linkage [161,37,25] re-
spectively (as known in the research area of databases), linking on the Web of Data is
a more generic and thus more complex task, as it is not limited to finding equivalent
entities in two knowledge bases. Rather, it aims at finding semantically related entities
and establishing typed links between them, most of these links being imbued with for-
mal properties (e.g., transitivity, symmetry, etc.) that can be used by reasoners and other
application to infer novel knowledge. In this section, we will focus on the discovery of
links between instances and use the term link discovery as name for this process. An
overview of ontology matching techniques is given in [41].

Formally, link discovery can be defined as follows:

Definition 3 (Link Discovery). Given two sets S (source) and T (target) of instances,
a (complex) semantic similarity measure σ : S × T → [0, 1] and a threshold θ ∈ [0, 1],
the goal of link discovery task is to compute the set M = {(s, t), σ(s, t) ≥ θ}.

In general, the similarity function used to carry out a link discovery task is described
by using a link specification (sometimes called linkage decision rule [67]).

11 http://lod-cloud.net/
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5.2 Challenges

Two key challenges arise when trying to discover links between two sets of instances:
the computational complexity of the matching task per se and the selection of an appro-
priate link specification. The first challenge is intrinsically related to the link discovery
process. The time complexity of a matching task can be measured by the number of
comparisons necessary to complete this task. When comparing a source knowledge
base S with a target knowledge base T , the completion of a matching task requires
a-priori O(|S ||T |) comparisons, an impractical proposition as soon as the source and
target knowledge bases become large. For example, discovering duplicate cities in DB-
pedia [6] alone would necessitate approximately 0.15 × 109 similarity computations.
Hence, the provision of time-efficient approaches for the reduction of the time com-
plexity of link discovery is a key requirement to instance linking frameworks for Linked
Data.

The second challenge of the link discovery process lies in the selection of an ap-
propriate link specification. The configuration of link discovery frameworks is usually
carried out manually, in most cases simply by guessing. Yet, the choice of a suitable link
specification measure is central for the discovery of satisfactory links. The large num-
ber of properties of instances and the large spectrum of measures available in literature
underline the complexity of choosing the right specification manually12. Supporting the
user during the process of finding the appropriate similarity measure and the right prop-
erties for each mapping task is a problem that still needs to be addressed by the Linked
Data community. Methods such as supervised and active learning can be used to guide
the user in need of mapping to a suitable linking configuration for his matching task. In
the following, we give a short overview of existing frameworks for Link Discovery on
the Web of Data. Subsequently, we present a time-efficient framework for link discovery
in more detail and show how it can detect link specifications using active learning.

5.3 Approaches to Link Discovery

Current frameworks for link discovery can be subdivided into two main categories:
domain-specific and universal frameworks. Domain-specific link discovery frameworks
aim at discovering links between knowledge bases from a particular domain. One of
the first domain-specific approaches to carry out instance linking for Linked Data was
implemented in the RKBExplorer13 [49] with the aim of discovering links between en-
tities from the domain of academics. Due to the lack of data available as Linked Data,
the RKBExplorer had to extract RDF from heterogeneous data source so as to popu-
late its knowledge bases with instances according to the AKT ontology14. Especially,
instances of persons, publications and institutions were retrieved from several major
metadata websites such as ACM and DBLP. The linking was implemented by the so-
called Consistent Reference Service (CRS) which linked equivalent entities by com-
paring properties including their type and label. So far, the CRS is limited to linking

12 The SimMetrics project (http://simmetrics.sf.net) provides an overview of strings sim-
ilarity measures.

13 http://www.rkbexplorer.com
14 http://www.aktors.org/publications/ontology/
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objects in the knowledge bases underlying the RKBExplorer and cannot be used for
other tasks without further implementation.

Another domain-specific tool is GNAT [128], which was developed for the music
domain. It implements several instance matching algorithms of which the most sophis-
ticated, the online graph matching algorithm (OGMA), applies a similarity propagation
approach to discover equivalent resources. The basic approach implemented by OGMA
starts with a single resource s ∈ S . Then, it retrieves candidate matching resources
t ∈ T by comparing properties such as foaf:name for artists and dc:title for al-
bums. If σ(s, t) ≥ θ, then the algorithm terminates. In case a disambiguation is needed,
the resourced related to s and t in their respective knowledge bases are compared and
their similarity value is cumulated to recompute σ(s, t). This process is iterated until a
mapping resource for s is found in T or no resource matches.

Universal link discovery frameworks are designed to carry out mapping tasks in-
dependently from the domain of the source and target knowledge bases. For exam-
ple, RDF-AI [138], a framework for the integration of RDF data sets, implements a
five-step approach that comprises the preprocessing, matching, fusion, interlinking and
post-processing of data sets. RDF-AI contains a series of modules that allow for com-
puting instances matches by comparing their properties. Especially, it contains trans-
lation modules that allow to process the information contained in data sources before
mapping. By these means, it can boost the precision of the mapping process. These
modules can be configured by means of XML-files. RDF-AI does not comprise means
for querying distributed data sets via SPARQL15. In addition, it suffers from not being
time-optimized. Thus, mapping by using this tool can be very time-consuming.

A time-optimized approach to link discovery is implemented by the LIMES frame-
work [111,110,115] (Link Discovery Framework for metric spaces) .16 The idea behind
the LIMES framework is to use the mathematical characteristics of similarity and dis-
tance measures to reduce the number of computations that have to be carried out by
the system without losing any link. For example, LIMES can make use of the fact that
the edit distance is a distance metric to approximate distances without having to com-
pute them [111]. Moreover, it implements the reductio-ratio-optimal space tiling algo-
rithmHR3 to compute similarities in affine spaces with Minkowski measures [109]. In
contrast to other frameworks (of which most rely on blocking), LIMES relies on time-
efficient set operators to combine the results of these algorithms efficiently and has
been shown to outperform the state of the art by these means [110]. Moreover, LIMES
implements unsupervised and supervised machine learning approaches for detecting
high-quality link specifications [115,116].

Another link discovery framework is SILK [155]. SILK implements several ap-
proaches to minimize the time necessary for mapping instances from knowledge bases.
In addition to implementing rough index pre-matching to reach a quasi-linear time-
complexity, SILK also implements a lossless blocking algorithm called MultiBlock [68]
to reduce its overall runtime. The approach relies on generating overlapping blocks of
instances and only comparing pairs of instances that are located in the same block.

15 http://www.w3.org/TR/rdf-sparql-query/
16 http://limes.sf.net. A graphical user interface can be found at http://saim.aksw.
org.
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Moreover, SILK provides supervised machine learning approaches for link discov-
ery [69].

It is important to notice that the task of discovering links between knowledge
bases is related with record linkage [161,37] and de-duplication [25]. The database
community has produced a vast amount of literature on efficient algorithms for solv-
ing these problems. Different blocking techniques such as standard blocking, sorted-
neighborhood, bigram indexing, canopy clustering and adaptive blocking [18,23,75]
have been developed to address the problem of the quadratic time complexity of brute
force comparison methods. The idea is to filter out obvious non-matches efficiently be-
fore executing the more detailed and time-consuming comparisons. In the following, we
present a state-of-the-art framework that implements lossless instance matching based
on a similar idea in detail.

5.4 The LIMES Algorithm

The original LIMES algorithm described in [111] addresses the scalability problem
of link discovery by utilizing the triangle inequality in metric spaces to compute pes-
simistic estimates of instance similarities. Based on these approximations, LIMES can
filter out a large number of instance pairs that cannot suffice the matching condition set
by the user. The real similarities of the remaining instances pairs are then computed and
the matching instances are returned.

Mathematical Framework In the remainder of this section, we use the following
notations:

1. A is an affine space,
2. m, m1, m2, m3 symbolize metrics on A,
3. x, y and z represent points from A and
4. α, β, γ and δ are scalars, i.e., elements of R.

Definition 4 (Metric space). A metric space is a pair (A,m) such that A is an affine
space and m : A × A→ R is a function such that for all x, y and z ∈ A

1. m(x, y) ≥ 0 (M1) (non-negativity),
2. m(x, y) = 0⇔ x = y (M2) (identity of indiscernibles),
3. m(x, y) = m(y, x) (M3) (symmetry) and
4. m(x, z) ≤ m(x, y) + m(y, z) (M4) (triangle inequality).

Note that the definition of a matching based on a similarity function σ can be rewritten
for metrics m as follows:

Definition 5 (Instance Matching in Metric Spaces). Given two sets S (source) and T
(target) of instances, a metric m : S × T → [0,∞[ and a threshold θ ∈ [0,∞[, the goal
of instance matching task is to compute the set M = {(s, t)|m(s, t) ≤ θ}.



Example of metrics on strings include the Levenshtein distance and the block dis-
tance. However, some popular measures such as JaroWinkler [160] do not satisfy the
triangle inequality and are consequently not metrics. The rationale behind the LIMES
framework is to make use of the boundary conditions entailed by the triangle inequality
(TI) to reduce the number of comparisons (and thus the time complexity) necessary to
complete a matching task. Given a metric space (A,m) and three points x, y and z in A,
the TI entails that

m(x, y) ≤ m(x, z) + m(z, y). (1)

Without restriction of generality, the TI also entails that

m(x, z) ≤ m(x, y) + m(y, z), (2)

thus leading to the following boundary conditions in metric spaces:

m(x, y) − m(y, z) ≤ m(x, z) ≤ m(x, y) + m(y, z). (3)

Inequality 3 has two major implications. The first is that the distance from a point x
to any point z in a metric space can be approximated given the distance from x to a
reference point y and the distance from the reference point y to z. Such a reference point
is called an exemplar following [48]. The role of an exemplar is to be used as a sample
of a portion of the metric space A. Given an input point x, knowing the distance from
x to an exemplar y allows to compute lower and upper bounds of the distance from x
to any other point z at a known distance from y. An example of such an approximation
is shown in Figure 21. In this figure, all the points on the circle are subject to the
same distance approximation. The distance from x to z is close to the lower bound of
inequality 3, while the distance from x to z′ is close to the upper bound of the same
inequality.
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Fig. 16: Approximation of distances via exemplars. The lower bound of the distance
from x to z can be approximated by m(x, y) − m(y, z).



The second implication of inequality 3 is that the distance from x to z can only be
smaller than θ if the lower bound of the approximation of the distance from x to z via
any exemplar y is also smaller than θ. Thus, if the lower bound of the approximation of
the distance m(x, z) is larger than θ, then m(x, z) itself must be larger than θ. Formally,

m(x, y) − m(y, z) > θ ⇒ m(x, z) > θ. (4)

Supposing that all distances from instances t ∈ T to exemplars are known, reducing
the number of comparisons simply consists of using inequality 4 to compute an approx-
imation of the distance from all s ∈ S to all t ∈ T and computing the real distance only
for the (s, t) pairs for which the first term of inequality 4 does not hold. This is the core
of the approach implemented by LIMES.

Computation of Exemplars The core idea underlying the computation of exemplars
in LIMES is to select a set of exemplars in the metric space underlying the matching
task in such a way that they are distributed uniformly in the metric space. One way
to achieve this goal is by ensuring that the exemplars display a high dissimilarity. The
approach used by LIMES to generate exemplars with this characteristic is shown in
Algorithm 1.

Algorithm 1 Computation of Exemplars
Require: Number of exemplars n
Require: Target knowledge base T

1. Pick random point e1 ∈ T
2. Set E = E ∪ {e1};
3. Compute the distance from e1 to all t ∈ T
while |E| < n do

4. Get a random point e′ such that e′ ∈ argmaxt
∑
t∈T

∑
e∈E

m(t, e)

5. E = E ∪ {e′};
6. Compute the distance from e′ to all t ∈ T

end while
7. Map each point in t ∈ T to one of the exemplars e ∈ E such that m(t, e) is minimal
return E

Let n be the desired number of exemplars and E the set of all exemplars. In step 1
and 2, LIMES initializes E by picking a random point e1 in the metric space (T,m) and
setting E = {e1}. Then, it computes the similarity from the exemplar e1 to every other
point in T (step 3). As long as the size of E has not reached n, LIMES repeats steps 4 to
6: In step 4, a point e′ ∈ T such that the sum of the distances from e′ to the exemplars
e ∈ E is maximal (there can be many of these points) is chosen randomly. This point is
chosen as new exemplar and consequently added to E (step 5). Then, the distance from
e′ to all other points in T is computed (step 6). Once E has reached the size n, LIMES
terminates the iteration. Finally, each point is mapped to the exemplar to which it is
most similar (step 7) and the exemplar computation terminates (step 8). This algorithm
has a constant time complexity of O(|E||T |).



An example of the results of the exemplar computation algorithm (|E| = 3) is shown
in Figure 17. The initial exemplar was the leftmost exemplar in the figure.

Fig. 17: Mapping of points to three exemplars in a metric space. The exemplars are
displayed as gray disks.

Matching Based on Exemplars The instances associated with an exemplar e ∈ E in
step 7 of Algorithm 1 are stored in a list Le sorted in descending order with respect to
the distance to e. Let λe

1...λ
e
m be the elements of the list Le. The goal of matching an

instance s from a source knowledge base to a target knowledge base w.r.t. a metric m is
to find all instances t of the target knowledge source such that m(s, t) ≤ θ, where θ is
a given threshold. LIMES achieves this goal by using the matching algorithm based on
exemplars shown in Algorithm 2.

LIMES only carries out a comparison when the approximation of the distance is less
than the threshold. Moreover, it terminates the similarity computation for an exemplar e
as soon as the first λe is found such that the lower bound of the distance is larger than θ.
This break can be carried out because the list Le is sorted, i.e., if m(s, e) − m(e, λe

i ) > θ
holds for the ith element of Le, then the same inequality holds for all λe

j ∈ Le with
j > i. In the worst case, LIMES’ matching algorithm has the time complexity O(|S ||T |),
leading to a total worst time complexity of O((|E| + |S |)|T |), which is larger than that of
brute force approaches. However, as the results displayed in Figure 18 show, a correct
parameterization of LIMES leads to significantly smaller numbers of comparisons and
runtimes.

5.5 TheHR3 algorithm

Let S resp. T be the source and target of a Link Discovery task. One of the key ideas
behind time-efficient Link Discovery algorithmsA is to reduce the number of compar-
isons that are effectively carried out to a number C(A) < |S ||T |. The reduction ratio RR



Algorithm 2 LIMES’ Matching algorithm
Require: Set of exemplars E
Require: Instance s ∈ S
Require: Metric m
Require: threshold θ

1. M = ∅

for e ∈ |E| do
if m(s, e) ≤ θ then

2. M = M ∪ {e}
for i = 1...|Le| do

if (m(s, e) − m(e, λe
i )) ≤ θ then

if m(s, λe
i ) ≤ θ then

3. M = M ∪ {(s, λe
i })

end if
else

break
end if

end for
end if

end for
return M

of an algorithmA is given by

RR(A) = 1 −
C(A)
|S ||T |

. (5)

RR(A) captures how much of the Cartesian product |S ||T | was not explored before the
output of A was reached. It is obvious that even an optimal lossless solution which
performs only the necessary comparisons cannot achieve a RR of 1. Let Cmin be the
minimal number of comparisons necessary to complete the Link Discovery task without
losing recall, i.e., Cmin = |M|. The relative reduction ratio RRR(A) is defined as the
portion of the minimal number of comparisons that was carried out by the algorithmA
before it terminated. Formally

RRR(A) =
1 − Cmin

|S ||T |

1 − C(A)
|S ||T |

=
|S ||T | −Cmin

|S ||T | −C(A)
. (6)

RRR(A) indicates how closeA is to the optimal solution with respect to the number of
candidates it tests. Given that C(A) ≥ Cmin, RRR(A) ≥ 1. Note that the larger the value
of RRR(A), the poorer the performance ofA with respect to the task at hand.

The main observation that led HR3 is that while most algorithms aim to optimize
their RR (and consequently their RRR), most approaches do not provide any guarantee
with respect to the RR (and consequently the RRR) that they can achieve. The approach
is the first mathematically optimal algorithm w.r.t the reduction ratio that it can achieve,
i.e., the first approach such that given any relative reduction ratio r, there is always a
setting that leads HR3 achieving a relative reduction ratio r′ with r′ ≤ r. To achieve
this goalHR3 relies on space tiling as introduced by the HYPPO algorithm [108].
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Fig. 18: Comparisons required by LIMES for different numbers of exemplars on knowl-
edge bases of different sizes. The x-axis shows the number of exemplars, the y-axis the
number of comparisons in multiples of 105.

Space Tiling for Link Discovery HYPPO addresses the problem of efficiently map-
ping instance pairs (s, t) ∈ S × T described by using exclusively numeric values in
a n-dimensional metric space and has been shown to outperform the state of the art in
previous work [108]. The observation behind space tiling is that in spaces (Ω, δ) with or-
thogonal, (i.e., uncorrelated) dimensions17, common metrics for Link Discovery can be
decomposed into the combination of functions φi,i∈{1...n} which operate on exactly one di-
mension ofΩ : δ = f (φ1, ..., φn). For Minkowski distances of order p, φi(x, ω) = |xi−ωi|

for all values of i and δ(x, ω) = p

√
n∑

i=1
φ

p
i (x, ω)p. A direct consequence of this observa-

tion is the inequality φi(x, ω) ≤ δ(x, ω). The basic insight that results this observation
is that the hypersphere H(ω, θ) = {x ∈ Ω : δ(x, ω) ≤ θ} is a subset of the hypercube V
defined as V(ω, θ) = {x ∈ Ω : ∀i ∈ {1...n}, φi(xi, ωi) ≤ θ}. Consequently, one can reduce
the number of comparisons necessary to detect all elements of H(ω, θ) by discarding
all elements which are not in V(ω, θ) as non-matches. Let ∆ = θ/α, where α ∈ N is
the granularity parameter that controls how fine-grained the space tiling should be (see
Figure 19 for an example). We first tile Ω into the adjacent hypercubes (short: cubes) C

17 Note that in all cases, a space transformation exists that can map a space with correlated di-
mensions to a space with uncorrelated dimensions.



that contain all the points ω such that

∀i ∈ {1...n}, ci∆ ≤ ωi < (ci + 1)∆ with (c1, ..., cn) ∈ Nn. (7)

We call the vector (c1, ..., cn) the coordinates of the cube C. Each point ω ∈ Ω lies in the
cube C(ω) with coordinates (bωi/∆c)i=1...n. Given such a space tiling, it is obvious that
V(ω, θ) consists of the union of the cubes such that ∀i ∈ {1...n} : |ci − c(ω)i| ≤ α.

θ

(a) α = 1

θ

(b) α = 2

θ

(c) α = 4

Fig. 19: Space tiling for different values of α. The colored squares show the set of el-
ements that must be compared with the instance located at the black dot. The points
within the circle lie within the distance θ of the black dot. Note that higher values of α
lead to a better approximation of the hypersphere but also to more hypercubes.

HR
3’s indexing scheme Let ω ∈ Ω = S ∪ T be an arbitrary reference point. Fur-

thermore, let δ be the Minkowski distance of order p. The index function is defined as
follows:

index(C, ω) =


0 if ∃i : |ci − c(ω)i| ≤ 1 with i ∈ {1, ..., n},
n∑

i=1
(|ci − c(ω)i| − 1)p else,

(8)

where C is a hypercube resulting from a space tiling and ω ∈ Ω. Figure 20 shows an
example of such indexes for p = 2 with α = 2 (Figure 20a) and α = 4 (Figure 20b).
Note that the blue square with index 0 contains the reference point ω. All elements of C
must only be compared with the elements of cubes C′ such that index(C,C′) ≤ αp. The
authors of [109] prove formally that given this approach to space tiling, the following
theorem holds:

Theorem 1. lim
α→∞

RRR(HR3, α) = 1.

This conclusion is illustrated by Figure 21, which shows the space tiling computed
by HR3 for different values of α with p = 2 and n = 2. The higher α, the closer
the approximation is to a circle. Note that these results allow to conclude that for any
RRR-value r larger than 1, there is a setting ofHR3 that can compute links with a RRR
smaller or equal to r.
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Fig. 20: Space tiling and resulting index for a two-dimensional example. Note that the
index in both subfigures was generated for exactly the same portion of space. The black
dot stands for the position of ω.

Evaluation HR3 was evaluated against HYPPO w.r.t. to the number of comparisons
that it has to carry out in several settings. In the first and second experiments, the goal
was to deduplicate DBpedia places by comparing their names (rdfs:label), minimum
elevation, elevation and maximum elevation. 2988 entities possessed all four properties.
The Euclidean metric was applied to the last three values with the thresholds 49 meters
resp. 99 meters for the first resp. second experiment. The third and fourth experiments
aimed to discover links between Geonames and LinkedGeoData. This experiment was
of considerably larger scale than the first one, as we compared 74458 entities in Geon-
ames with 50031 entities from LinkedGeoData. Again, the number of comparisons nec-
essary to complete the task by using the Euclidean metric was measured. The distance
thresholds were set to 1 resp. 9◦ in experiment 3 resp. 4. We ran all experiments on
the same Windows 7 Enterprise 64-bit computer with a 2.8GHz i7 processor with 8GB
RAM. The JVM was allocated 7GB RAM to ensure that the runtimes were not influ-
enced by swapping. Only one of the kernels of the processors was used.

The results (see Figure 22) show thatHR3 can reduce the overhead in comparisons
(i.e., the number of unnecessary comparisons divided by the number of necessary com-
parisons) from approximately 24% for HYPPO to approximately 6% (granularity = 32).
In experiment 2, the overhead is reduced from 4.1% to 2%. This difference in overhead
reduction is mainly due to the data clustering around certain values and the clusters
having a radius between 49 meters and 99 meters. Thus, running the algorithms with
a threshold of 99 meters led to only a small a-priori overhead and HYPPO performing
remarkably well. Still, even on such data distributions, HR3 was able to discard even
more data and to reduce the number of unnecessary computations by more than 50%
relative. In the best case (Exp. 4, α = 32, see Figure 22d),HR3 required approximately



(a) α = 4 (b) α = 8 (c) α = 10

(d) α = 25 (e) α = 50 (f) α = 100

Fig. 21: Space tilings generated by HR3 for different values of α. The white squares
are selected for comparisons with the elements of the square in the middle of the figure
whilst the colored ones are discarded.

4.13 × 106 less comparisons than HYPPO for α = 32. Even for the smallest setting
(Exp. 1, see Figure 22a),HR3 still required 0.64 × 106 less comparisons.

5.6 Active Learning of Link Specifications

The second challenge of Link Discovery is the time-efficient discovery of link specifi-
cations for a particular linking task. Several approaches have been proposed to achieve
this goal, of which most rely on genetic programming [69,116,114]. The COALA
(Correlation-Aware Active Learning) approach was implemented on top of the genetic
programming approach EAGLE [115] with the aim of improving the selection of posi-
tive and negative examples during active learning. In the following, we give an overview
of COALA.

Intuition LetN be the set of most informative negative and P the set of most informa-
tive negative examples w.r.t. an informativeness function ifm (e.g., the distance from the
decision boundary).used by a curious classifier [140] The basic insight behind COALA
is that the correlation between the features of the elements of N and P should play a
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Fig. 22: Number of comparisons forHR3 and HYPPO.

role when computing the sets I+ and I− of positive resp. negative queries for the or-
acle. In particular, two main factors affect the information content of a link candidate:
its similarity to elements of its presumed class and to elements of the other class. For
the sake of simplicity, we will assume that the presumed class of the link candidate of
interest is +1, i.e., that the link candidate was classified as positive by the current curi-
ous classifier. Our insights yet hold symmetrically for link candidates whose presumed
class is −1.

Let A = (sA, tA), B = (sB, tB) ∈ P to be two link candidates which are equidistant
from C’s boundary. Consider Figure 23a, where P = {A, B,C} and N = {D}. The link
candidate B is on on average most distant from any other elements of P. Thus, it is
more likely to be a statistical outlier than A. Hence, making a classification error on
B should not have the same impact as an erroneous classification of link candidate A,
which is close to another presumably positive link candidate, C. Consequently, B should
be considered less informative than A. Approaches that make use of this information are
said to exploit the intra-class correlation. Now, consider Figure 23b, where P = {A, B}
and N = {C,D}. While the probability of A being an outlier is the same as B’s, A
is still to be considered more informative than B as it is located closer to elements
of N and can thus provide more information on where to set the classifier boundary.
This information is dubbed inter-class correlation. Several approaches that make use
of these two types of correlations can be envisaged. In the following, we present two
approaches for these purposes. The first makes use of intra-class correlations and relies
on graph clustering. The second approach relies on the spreading activation principle
in combination with weight decay. We assume that the complex similarity function σ



(a) Intra-correlation (b) Inter-correlation

Fig. 23: Examples of correlations within classes and between classes. In each subfigure,
the gray surface represent N while the white surface stands for P. The oblique line is
C’s boundary.

underlying C is computed by combining n atomic similarity functions σ1, . . . , σn. This
combination is most commonly carried out by using metric operators such as min, max
or linear combinations.18 Consequently, each link candidate (s, t) can be described by
a vector (σ1(s, t), . . . , σn(s, t)) ∈ [0, 1]n. We define the similarity of link candidates
sim : (S ×T )2 → [0, 1] to be the inverse of the Euclidean distance in the space spawned
by the similarities σ1 to σn. Hence, the similarity of two link candidates (s, t) and (s′, t′)
is given by:

sim((s, t), (s′, t′)) =
1

1 +

√
n∑

i=1
(σi(s, t) − σi(s′, t′))2

. (9)

Note that we added 1 to the denominator to prevent divisions by 0.

Graph Clustering The basic intuition behind using clustering for COALA is that
groups of very similar link candidates can be represented by a single link candidate.
Consequently, once a representative of a group has been chosen, all other elements of
the group become less informative. An example that illustrates this intuition is given in
Figure 24. We implemented COALA based on clustering as follows: In each iteration,
we begin by first selecting two sets S+ ⊆ P resp. S− ⊆ N that contain the positive resp.
negative link candidates that are most informative for the classifier at hand. Formally,
S+ fulfills

∀x ∈ S+ ∀y ∈ P, y < S+ → ifm(y) ≤ ifm(x). (10)

The analogous equation holds for S−. In the following, we will explain the further steps
of the algorithm for S+. The same steps are carried out for S−.

First, we compute the similarity of all elements of S+ by using the similarity func-
tion shown in Equation 9. In the resulting similarity matrix, we set all elements of the
diagonal to 0. Then, for each x ∈ S+, we only retain a fixed number ec of highest sim-
ilarity values and set all others to 0. The resulting similarity matrix is regarded as the
adjacency matrix of an undirected weighted graph G = (V, E, sim). G’s set of nodes V

18 See [110] for a more complete description of a grammar for link specifications.
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Fig. 24: Example of clustering. One of the most informative single link candidate is
selected from each cluster. For example, d is selected from the cluster {d, e}.

is equal to S+. The set of edges E is a set of 2-sets19 of link candidates. Finally, the
weighted function is the similarity function sim. Note that ec is the minimal degree of
nodes in G.

In a second step, we use the graph G as input for a graph clustering approach.
The resulting clustering is assumed to be a partition V of the set V of vertices of G.
The informativeness of partition Vi ∈ V is set to max

x∈Vi
ifm(x). The final step of our

approach consists of selecting the most informative node from each of the k most infor-
mative partitions. These are merged to generate I+, which is sent as query to the oracle.
The computation of I−is carried out analogously. Note that this approach is generic in
the sense that it can be combined with any graph clustering algorithm that can process
weighted graphs as well as with any informativeness function ifm. Here, we use Border-
Flow [117] as clustering algorithm because (1) it has been used successfully in several
other applications such as the creation of SPARQL benchmarks [101] and the analysis
of protein-protein interactions [107]. and (2) it is parameter-free and does not require
any tuning.

Spreading Activation with Weight Decay The idea behind spreading activation with
weight decay (WD) is to combine the intra- and inter-class correlation to determine
the informativeness of each link candidate. Here, we begin by computing the set S =

S+∪S−, whereS+ andS− are described as above. Let si and s j be the ith and jth elements
of S. We then compute the quadratic similarity matrixM with entries mi j = sim(si, s j)
for i , j and 0 else. Note that both negative and positive link candidates belong to S.
Thus,M encodes both inter- and intra-class correlation. In addition toM, we compute
the activation vector A by setting its entries to ai =ifm(si). In the following, A is
considered to be a column vector.

In a first step, we normalize the activation vector A to ensure that the values con-
tained therein do not grow indefinitely. Then, in a second step, we setA = A+M×A.
This has the effect of propagating the activation of each s to all its neighbors according
to the weights of the edges between s and its neighbors. Note that elements of S+ that

19 A n-set is a set of magnitude n.



are close to elements of S− get a higher activation than elements of S+ that are further
away from S− and vice-versa. Moreover, elements at the center of node clusters (i.e.,
elements that are probably no statistical outliers) also get a higher activation than ele-
ments that are probably outliers. The idea behind the weight decay step is to update the
matrix by setting each mi j to mr

i j, where r > 1 is a fix exponent. This is the third step of
the algorithm. Given that ∀i∀ j mi j ≤ 1, the entries in the matrix get smaller with time.
By these means, the amount of activation transferred across long paths is reduced. We
run this three-step procedure iteratively until all non-1 entries of the matrix are less or
equal to a threshold ε = 10−2. The k elements of S+ resp. S− with maximal activation
are returned as I+ resp. I−. In the example shown in Figure 25, while all nodes from S+

and S− start with the same activation, two nodes get the highest activation after only 3
iterations.
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Fig. 25: Example of weight decay. Here r was set to 2. The left picture shows the initial
activations and similarity scores while the right picture shows the results after 3 itera-
tions. Note that for the sake of completeness the weights of the edges were not set to 0
when they reached ε.

Evaluation COALA was evaluated by running weight decay and clustering in combi-
nation with EAGLE, an active genetic programming approach for learning link specifi-
cations. Throughout the following experiments, EAGLE’s mutation and crossover rates
were set to 0.6. Individuals were given a 70% chance to get selected for reproduction.
The population sizes were set to 20 and 100. We set k = 5 and ran our experiments
for 10 iterations. Between each iteration we evolved the populations for 50 generations.
We ran our experiments on two real-world datasets and three synthetic datasets. The
synthetic datasets consisted of the Persons1, Person2 and Restaurants datasets from the
OAEI 2010 benchmark20. The real-world datasets consisted of the ACM-DBLP and
Abt-Buy datasets, which were extracted from websites or databases [75] 21. Given that
genetic programming is non-deterministic, all results presented below are the means

20 http://oaei.ontologymatching.org/2010/
21 http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/
benchmark_datasets_for_entity_resolution

http://oaei.ontologymatching.org/2010/
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution


of 5 runs. Each experiment was ran on a single thread of a server running JDK1.7
on Ubuntu 10.0.4 and was allocated maximally 2GB of RAM. The processors were
2.0GHz Quadcore AMD Opterons. An excerpt of the results is shown in Figure 26.
While the results show that COALA outperform EAGLE, it remains unclear whether
WD or CL is the best approach to achieving a faster convergence towards the optimal
solution.
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Fig. 26: F-score and runtime on the ACM-DBLP dataset. f(X) stands for the F-score
achieved by algorithm X, while d(X) stands for the total duration required by the algo-
rithm.

5.7 Conclusion

We presented and discussed linking approaches for Linked Data and the challenges they
face. In addition, we gave an overview of several state-of-the-art approaches for instance
matching for Linked Data. We then presented time-efficient approaches for link discov-
ery. Finally, we presented a state-of-the-art approach for the active learning of link spec-
ifications. This approach can be easily extended to learn specifications automatically. 22

Novel challenges that need to be addressed include the automatic management of re-
sources for link specifications. First works on running link discovery in parallel have
shown that using massively parallel hardware such as GPUs can lead to better results
that using cloud implementations even on considerably large datasets [113]. Detecting
the right resources for linking automatically given a hardware landscape is yet still a
dream to achieve.

22 Such an extension is the basis of the self-configuration algorithm of the SAIM framework.



6 Enrichment

The term enrichment in this chapter refers to the (semi-)automatic extension of a knowl-
edge base schema. It describes the process of increasing the expressiveness and se-
mantic richness of a knowledge base. Usually, this is achieved by adding or refining
terminological axioms.

Enrichment methods can typically be applied in a grass-roots approach to knowl-
edge base creation. In such an approach, the whole ontological structure is not created
upfront, but evolves with the data in a knowledge base. Ideally, this enables a more ag-
ile development of knowledge bases. In particular, in the context of the Web of Linked
Data such an approach appears to be an interesting alternative to more traditional on-
tology engineering methods. Amongst others, Tim Berners-Lee advocates to get “raw
data now”23 and worry about the more complex issues later.

Knowledge base enrichment can be seen as a sub-discipline of ontology learning.
Ontology learning is more general in that it can rely on external sources, e.g. written
text, to create an ontology. The term knowledge base enrichment is typically used when
already existing data in the knowledge base is analysed to improve its schema.

Enrichment methods span several research areas like knowledge representation and
reasoning, machine learning, statistics, natural language processing, formal concept
analysis and game playing. Considering the variety of methods, we structure this sec-
tion as follows: First, we give an overview of different types of enrichment and list some
typical methods and give pointers to references, which allow the reader to obtain more
information on a topic. In the second part, we describe a specific software – the ORE
tool – in more detail.

6.1 State of the Art and Types of Enrichment

Ontology enrichment usually involves applying heuristics or machine learning tech-
niques to find axioms, which can be added to an existing ontology. Naturally, different
techniques have been applied depending on the specific type of axiom.

One of the most complex tasks in ontology enrichment is to find definitions of
classes. This is strongly related to Inductive Logic Programming (ILP) [120] and more
specifically supervised learning in description logics. Research in those fields has many
applications apart from being applied to enrich ontologies. For instance, it is used in
the life sciences to detect whether drugs are likely to be efficient for particular dis-
eases. Work on learning in description logics goes back to e.g. [33,34], which used so-
called least common subsumers to solve the learning problem (a modified variant of the
problem defined in this article). Later, [17] invented a refinement operator for ALER
and proposed to solve the problem by using a top-down approach. [39,65,66] combine
both techniques and implement them in the YINYANG tool. However, those algorithms
tend to produce very long and hard-to-understand class expressions. The algorithms
implemented in DL-Learner [85,86,77,87,79] overcome this problem and investigate
the learning problem and the use of top down refinement in detail. DL-FOIL [42] is
a similar approach, which is based on a mixture of upward and downward refinement

23 http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html
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of class expressions. They use alternative measures in their evaluation, which take the
open world assumption into account, which was not done in ILP previously. Most re-
cently, [81] implements appropriate heuristics and adaptations for learning definitions
in ontologies. The focus in this work is efficiency and practical application of learning
methods. The article presents plugins for two ontology editors (Protégé and OntoWiki)
as well stochastic methods, which improve previous methods by an order of magnitude.
For this reason, we will analyse it in more detail in the next subsection. The algorithms
presented in the article can also learn super class axioms.

A different approach to learning the definition of a named class is to compute the
so called most specific concept (msc) for all instances of the class. The most specific
concept of an individual is the most specific class expression, such that the individual is
instance of the expression. One can then compute the least common subsumer (lcs) [16]
of those expressions to obtain a description of the named class. However, in expressive
description logics, an msc does not need to exist and the lcs is simply the disjunction
of all expressions. For light-weight logics, such as EL, the approach appears to be
promising.

Other approaches, e.g. [90] focus on learning in hybrid knowledge bases combining
ontologies and rules. Ontology evolution [91] has been discussed in this context. Usu-
ally, hybrid approaches are a generalisation of concept learning methods, which enable
powerful rules at the cost of efficiency (because of the larger search space). Similar as
in knowledge representation, the tradeoff between expressiveness of the target language
and efficiency of learning algorithms is a critical choice in symbolic machine learning.

Another enrichment task is knowlege base completion. The goal of such a task is
to make the knowledge base complete in a particular well-defined sense. For instance,
a goal could be to ensure that all subclass relationships between named classes can be
inferred. The line of work starting in [132] and further pursued in e.g. [15] investigates
the use of formal concept analysis for completing knowledge bases. It is promising,
although it may not be able to handle noise as well as a machine learning technique. A
Protégé plugin [139] is available. [153] proposes to improve knowledge bases through
relational exploration and implemented it in the RELExO framework24. It focuses on
simple relationships and the knowledge engineer is asked a series of questions. The
knowledge engineer either must positively answer the question or provide a counterex-
ample.

[154] focuses on learning disjointness between classes in an ontology to allow for
more powerful reasoning and consistency checking. To achieve this, it can use the ontol-
ogy itself, but also texts, e.g. Wikipedia articles corresponding to a concept. The article
includes an extensive study, which shows that proper modelling disjointness is actually
a difficult task, which can be simplified via this ontology enrichment method.

Another type of ontology enrichment is schema mapping. This task has been widely
studied and will not be discussed in depth within this chapter. Instead, we refer to [31]
for a survey on ontology mapping.

There are further more light-weight ontology enrichment methods. For instance,
taxonomies can be learned from simple tag structures via heuristics [29,152]. Similarly,
“properties of properties” can be derived via simple statistical analysis. This includes

24 http://code.google.com/p/relexo/
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the detection whether a particular property might be symmetric, function, reflexive,
inverse functional etc. Similarly, domains and ranges of properties can be determined
from existing data. Enriching the schema with domain and range axioms allows to find
cases, where properties are misused via OWL reasoning.

Type/Aim References
Taxonomies [162,29,152]
Definitions often done via ILP approaches such as [85,86,87,81,42,39,65,66,17],

genetic approaches [77] have also been used
Super Class Axioms [81,152,29]
Rules in Ontologies [90,91]
Disjointness [154]
Properties of properties [29,45]
Alignment challenges: [141], recent survey: [31]
Completion formal concept analysis and relational exploration [15,153,139]
Table 3: Work in ontology enrichment grouped by type or aim of learned structures.

In the following subsection, we describe an enrichment approach for learning defi-
nitions and super class axioms in more detail. The algorithm was recently developed by
the first authors and is described in full detail in [81].

6.2 Class Expression Learning in DL-Learner

The Semantic Web has recently seen a rise in the availability and usage of knowledge
bases, as can be observed within the Linking Open Data Initiative, the TONES and
Protégé ontology repositories, or the Watson search engine. Despite this growth, there
is still a lack of knowledge bases that consist of sophisticated schema information and
instance data adhering to this schema. Several knowledge bases, e.g. in the life sciences,
only consist of schema information, while others are, to a large extent, a collection
of facts without a clear structure, e.g. information extracted from data bases or texts.
The combination of sophisticated schema and instance data allows powerful reasoning,
consistency checking, and improved querying possibilities. We argue that being able to
learn OWL class expressions25 is a step towards achieving this goal.

Example 1. As an example, consider a knowledge base containing a class Capital
and instances of this class, e.g. London, Paris, Washington, Canberra etc. A machine
learning algorithm could, then, suggest that the class Capital may be equivalent to
one of the following OWL class expressions in Manchester OWL syntax26:

City and isCapitalOf at least one GeopoliticalRegion
City and isCapitalOf at least one Country

25 http://www.w3.org/TR/owl2-syntax/#Class_Expressions
26 For details on Manchester OWL syntax (e.g. used in Protégé, OntoWiki) see [62].
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Both suggestions could be plausible: The first one is more general and includes
cities that are capitals of states, whereas the latter one is stricter and limits the instances
to capitals of countries. A knowledge engineer can decide which one is more appropri-
ate, i.e. a semi-automatic approach is used, and the machine learning algorithm should
guide her by pointing out which one fits the existing instances better. Assuming the
knowledge engineer decides for the latter, an algorithm can show her whether there
are instances of the class Capital which are neither instances of City nor related via
the property isCapitalOf to an instance of Country.27 The knowledge engineer can
then continue to look at those instances and assign them to a different class as well
as provide more complete information; thus improving the quality of the knowledge
base. After adding the definition of Capital, an OWL reasoner can compute further
instances of the class which have not been explicitly assigned before.

Using machine learning for the generation of suggestions instead of entering
them manually has the advantage that 1.) the given suggestions fit the instance data,
i.e. schema and instances are developed in concordance, and 2.) the entrance barrier for
knowledge engineers is significantly lower, since understanding an OWL class expres-
sion is easier than analysing the structure of the knowledge base and creating a class
expression manually. Disadvantages of the approach are the dependency on the avail-
ability of instance data in the knowledge base and requirements on the quality of the
ontology, i.e. modelling errors in the ontology can reduce the quality of results.

Overall, we describe the following in this chapter:

– extension of an existing learning algorithm for learning class expressions to the
ontology engineering scenario,

– presentation and evaluation of different heuristics,
– showcase how the enhanced ontology engineering process can be supported with

plugins for Protégé and OntoWiki,
– evaluation of the presented algorithm with several real ontologies from various do-

mains.

The adapted algorithm for solving the learning problems, which occur in the on-
tology engineering process, is called CELOE (Class Expression Learning for Ontology
Engineering). It was implemented within the open-source framework DL-Learner.28

DL-Learner [78,79] leverages a modular architecture, which allows to define differ-
ent types of components: knowledge sources (e.g. OWL files), reasoners (e.g. DIG29

or OWL API based), learning problems, and learning algorithms. In this overview, we
focus on the latter two component types, i.e. we define the class expression learning
problem in ontology engineering and provide an algorithm for solving it.

Learning Problem The process of learning in logics, i.e. trying to find high-level ex-
planations for given data, is also called inductive reasoning as opposed to inference or
deductive reasoning. The main difference is that in deductive reasoning it is formally

27 This is not an inconsistency under the standard OWL open world assumption, but rather a hint
towards a potential modelling error.

28 http://dl-learner.org
29 http://dl.kr.org/dig/
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shown whether a statement follows from a knowledge base, whereas in inductive learn-
ing new statements are invented. Learning problems, which are similar to the one we
will analyse, have been investigated in Inductive Logic Programming [120] and, in fact,
the method presented here can be used to solve a variety of machine learning tasks apart
from ontology engineering.

In the ontology learning problem we consider, we want to learn a formal description
of a class A, which has (inferred or asserted) instances in the considered ontology. In the
case that A is already described by a class expression C via axioms of the form A v C
or A ≡ C, those can be either refined, i.e. specialised/generalised, or relearned from
scratch by the learning algorithm. To define the class learning problem, we need the
notion of a retrieval reasoner operation RK (C). RK (C) returns the set of all instances of
C in a knowledge base K . If K is clear from the context, the subscript can be omitted.

Definition 6 (class learning problem). Let an existing named class A in a knowl-
edge base K be given. The class learning problem is to find an expression C such that
RK (C) = RK (A).

Clearly, the learned expression C is a description of (the instances of) A. Such an
expression is a candidate for adding an axiom of the form A ≡ C or A v C to the
knowledge base K . If a solution of the learning problem exists, then the used base
learning algorithm (as presented in the following subsection) is complete, i.e. guar-
anteed to find a correct solution if one exists in the target language and there are
no time and memory constraints (see [86,87] for the proof). In most cases, we will
not find a solution to the learning problem, but rather an approximation. This is nat-
ural, since a knowledge base may contain false class assignments or some objects
in the knowledge base are described at different levels of detail. For instance, in
Example 1, the city “Apia” might be typed as “Capital” in a knowledge base, but
not related to the country “Samoa”. However, if most of the other cities are related
to countries via a role isCapitalOf, then the learning algorithm may still suggest
City and isCapitalOf at least one Country since this describes the majority
of capitals in the knowledge base well. If the knowledge engineer agrees with such a
definition, then a tool can assist him in completing missing information about some
capitals.

According to Occam’s razor [26] simple solutions of the learning problem are to
be preferred over more complex ones, because they are more readable. This is even
more important in the ontology engineering context, where it is essential to suggest
simple expressions to the knowledge engineer. We measure simplicity as the length of
an expression, which is defined in a straightforward way, namely as the sum of the
numbers of concept, role, quantifier, and connective symbols occurring in the expres-
sion. The algorithm is biased towards shorter expressions. Also note that, for simplicity
the definition of the learning problem itself does enforce coverage, but not prediction,
i.e. correct classification of objects which are added to the knowledge base in the future.
Concepts with high coverage and poor prediction are said to overfit the data. However,
due to the strong bias towards short expressions this problem occurs empirically rarely
in description logics [87].



Fig. 27: Outline of the
general learning ap-
proach in CELOE: One
part of the algorithm
is the generation of
promising class expres-
sions taking the available
background knowledge
into account. Another
part is a heuristic mea-
sure of how close an
expression is to being a
solution of the learning
problem. Figure adapted
from [55].

Base Learning Algorithm Figure 27 gives a brief overview of the CELOE algorithm,
which follows the common “generate and test“ approach in ILP. This means that learn-
ing is seen as a search process and several class expressions are generated and tested
against a background knowledge base. Each of those class expressions is evaluated us-
ing a heuristic, which is described in the next section. A challenging part of a learning
algorithm is to decide which expressions to test. In particular, such a decision should
take the computed heuristic values and the structure of the background knowledge into
account. For CELOE, we use the approach described in [86,87] as base, where this
problem has already been analysed, implemented, and evaluated in depth. It is based on
the idea of refinement operators:

Definition 7 (refinement operator). A quasi-ordering is a reflexive and transitive re-
lation. In a quasi-ordered space (S ,�) a downward (upward) refinement operator ρ is a
mapping from S to 2S , such that for any C ∈ S we have that C′ ∈ ρ(C) implies C′ � C
(C � C′). C′ is called a specialisation (generalisation) of C.

Refinement operators can be used for searching in the space of expressions. As
ordering we can use subsumption. (Note that the subsumption relation v is a quasi-
ordering.) If an expression C subsumes an expression D (D v C), then C will cover
all examples which are covered by D. This makes subsumption a suitable order for
searching in expressions as it allows to prune parts of the search space without losing
possible solutions.

The approach we used is a top-down algorithm based on refinement operators as
illustrated in Figure 28 (more detailed schemata can be found in the slides30 of the on-
tology learning lecture of Reasoning Web 2010 [80]). This means that the first class ex-
pression, which will be tested is the most general expression (>), which is then mapped

30 http://reasoningweb.org/2010/teaching-material/lehmann.pdf
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Fig. 28: Illustration of a search tree in a top down refinement approach.

to a set of more specific expressions by means of a downward refinement operator. Nat-
urally, the refinement operator can be applied to the obtained expressions again, thereby
spanning a search tree. The search tree can be pruned when an expression does not cover
sufficiently many instances of the class A we want to describe. One example for a path
in a search tree spanned up by a downward refinement operator is the following ( 
denotes a refinement step):

> Person Person u takesPartinIn.>

 Person u takesPartIn.Meeting

The heart of such a learning strategy is to define a suitable refinement operator and
an appropriate search heuristics for deciding which nodes in the search tree should be
expanded. The refinement operator in the considered algorithm is defined in [87]. It
is based on earlier work in [86] which in turn is built on the theoretical foundations
of [85]. It has been shown to be the best achievable operator with respect to a set of
properties (not further described here), which are used to assess the performance of
refinement operators. The learning algorithm supports conjunction, disjunction, nega-
tion, existential and universal quantifiers, cardinality restrictions, hasValue restrictions
as well as boolean and double datatypes.

6.3 Finding a Suitable Heuristic

A heuristic measures how well a given class expression fits a learning problem and is
used to guide the search in a learning process. To define a suitable heuristic, we first
need to address the question of how to measure the accuracy of a class expression. We
introduce several heuristics, which can be used for CELOE and later evaluate them.

We cannot simply use supervised learning from examples directly, since we do not
have positive and negative examples available. We can try to tackle this problem by us-
ing the existing instances of the class as positive examples and the remaining instances



as negative examples. This is illustrated in Figure 29, where K stands for the knowl-
edge base and A for the class to describe. We can then measure accuracy as the number
of correctly classified examples divided by the number of all examples. This can be
computed as follows for a class expression C and is known as predictive accuracy in
Machine Learning:

predacc(C) = 1 −
|R(A) \ R(C)| + |R(C) \ R(A)|

n
n = |Ind(K)|

Here, Ind(K) stands for the set of individuals occurring in the knowledge base.
R(A) \ R(C) are the false negatives whereas R(C) \ R(A) are false positives. n is the
number of all examples, which is equal to the number of individuals in the knowledge
base in this case. Apart from learning definitions, we also want to be able to learn super
class axioms (A v C). Naturally, in this scenario R(C) should be a superset of R(A).
However, we still do want R(C) to be as small as possible, otherwise > would always
be a solution. To reflect this in our accuracy computation, we penalise false negatives
more than false positives by a factor of t (t > 1) and map the result to the interval [0, 1]:

predacc(C, t) = 1 − 2 ·
t · |R(A) \ R(C)| + |R(C) \ R(A)|

(t + 1) · n
n = |Ind(K)|

While being straightforward, the outlined approach of casting class learning into a stan-
dard learning problem with positive and negative examples has the disadvantage that
the number of negative examples will usually be much higher than the number of posi-
tive examples. As shown in Table 4, this may lead to overly optimistic estimates. More
importantly, this accuracy measure has the drawback of having a dependency on the
number of instances in the knowledge base.

Therefore, we investigated further heuristics, which overcome this problem, in par-
ticular by transferring common heuristics from information retrieval to the class learn-
ing problem:

1. F-Measure: Fβ-Measure is based on precision and recall weighted by β. They can
be computed for the class learning problem without having negative examples. In-
stead, we perform a retrieval for the expression C, which we want to evaluate. We
can then define precision as the percentage of instances of C, which are also in-
stances of A and recall as percentage of instances of A, which are also instances of
C. This is visualised in Figure 29. F-Measure is defined as harmonic mean of pre-
cision and recall. For learning super classes, we use F3 measure by default, which
gives recall a higher weight than precision.

2. A-Measure: We denote the arithmetic mean of precision and recall as A-Measure.
Super class learning is achieved by assigning a higher weight to recall. Using the
arithmetic mean of precision and recall is uncommon in Machine Learning, since
it results in too optimistic estimates. However, we found that it is useful in super
class learning, where Fn is often too pessimistic even for higher n.

3. Generalised F-Measure: Generalised F-Measure has been published in [36] and
extends the idea of F-measure by taking the three valued nature of classification
in OWL/DLs into account: An individual can either belong to a class, the negation
of a class or none of both cases can be proven. This differs from common binary



classification tasks and, therefore, appropriate measures have been introduced (see
[36] for details). Adaption for super class learning can be done in a similar fashion
as for F-Measure itself.

4. Jaccard Distance: Since R(A) and R(C) are sets, we can use the well-known Jaccard
coefficient to measure the similarity between both sets.

Fig. 29: Visualisation of different accuracy measurement approaches. K is the knowl-
edge base, A the class to describe and C a class expression to be tested. Left side:
Standard supervised approach based on using positive (instances of A) and negative
(remaining instances) examples. Here, the accuracy of C depends on the number of
individuals in the knowledge base. Right side: Evaluation based on two criteria: recall
(Which fraction of R(A) is in R(C)?) and precision (Which fraction of R(C) is in R(A)?).

We argue that those four measures are more appropriate than predictive accuracy
when applying standard learning algorithms to the ontology engineering use case. Ta-
ble 4 provides some example calculations, which allow the reader to compare the dif-
ferent heuristics.

Efficient Heuristic Computation Several optimisations for computing the heuristics are
described in [81]. In particular, adapted approximate reasoning and stochastic approxi-
mations are discussed. Those improvements have shown to lead to order of magnitude
gains in efficiency for many ontologies. We refrain from describing those methods in
this chapter.

The Protégé Plugin After implementing and testing the described learning algorithm,
we integrated it into Protégé and OntoWiki. Together with the Protégé developers, we
extended the Protégé 4 plugin mechanism to be able to seamlessly integrate the DL-
Learner plugin as an additional method to create class expressions. This means that
the knowledge engineer can use the algorithm exactly where it is needed without any
additional configuration steps. The plugin has also become part of the official Protégé 4
repository, i.e. it can be directly installed from within Protégé.

A screenshot of the plugin is shown in Figure 30. To use the plugin, the knowledge
engineer is only required to press a button, which then starts a new thread in the back-
ground. This thread executes the learning algorithm. The used algorithm is an anytime
algorithm, i.e. at each point in time we can always see the currently best suggestions.



illustration pred. acc. F-Measure A-Measure Jaccard
eq sc eq sc eq sc

80% 67% 0% 0% 0% 0% 0%

90% 92% 67% 73% 75% 88% 50%

70% 75% 40% 48% 63% 82% 25%

98% 97% 90% 90% 90% 90% 82%

95% 88% 67% 61% 75% 63% 50%

Table 4: Example accuracies for selected cases (eq = equivalence class axiom, sc =

super class axiom). The images on the left represent an imaginary knowledge base K
with 1000 individuals, where we want to describe the class A by using expression C.
It is apparent that using predictive accuracy leads to impractical accuracies, e.g. in the
first row C cannot possibly be a good description of A, but we still get 80% accuracy,
since all the negative examples outside of A and C are correctly classified.

The GUI updates the suggestion list each second until the maximum runtime – 10 sec-
onds by default – is reached. This means that the perceived runtime, i.e. the time after
which only minor updates occur in the suggestion list, is often only one or two seconds
for small ontologies. For each suggestion, the plugin displays its accuracy.

When clicking on a suggestion, it is visualized by displaying two circles: One stands
for the instances of the class to describe and another circle for the instances of the
suggested class expression. Ideally, both circles overlap completely, but in practice this
will often not be the case. Clicking on the plus symbol in each circle shows its list of
individuals. Those individuals are also presented as points in the circles and moving
the mouse over such a point shows information about the respective individual. Red
points show potential problems detected by the plugin. Please note that we use closed
world reasoning to detect those problems. For instance, in our initial example, a capital
which is not related via the property isCapitalOf to an instance of Country is marked
red. If there is not only a potential problem, but adding the expression would render the
ontology inconsistent, the suggestion is marked red and a warning message is displayed.



Fig. 30: A screenshot of the
DL-Learner Protégé plu-
gin. It is integrated as ad-
ditional tab to create class
expressions in Protégé. The
user is only required to
press the “suggest equiva-
lent class expressions” but-
ton and within a few sec-
onds they will be displayed
ordered by accuracy. If de-
sired, the knowledge engi-
neer can visualize the in-
stances of the expression to
detect potential problems.
At the bottom, optional ex-
pert configuration settings
can be adopted.

Accepting such a suggestion can still be a good choice, because the problem often lies
elsewhere in the knowledge base, but was not obvious before, since the ontology was
not sufficiently expressive for reasoners to detect it. This is illustrated by a screencast
available from the plugin homepage,31 where the ontology becomes inconsistent after
adding the axiom, and the real source of the problem is fixed afterwards. Being able to
make such suggestions can be seen as a strength of the plugin.

The plugin allows the knowledge engineer to change expert settings. Those settings
include the maximum suggestion search time, the number of results returned and set-
tings related to the desired target language, e.g. the knowledge engineer can choose
to stay within the OWL 2 EL profile or enable/disable certain class expression con-
structors. The learning algorithm is designed to be able to handle noisy data and the
visualisation of the suggestions will reveal false class assignments so that they can be
fixed afterwards.

The OntoWiki Plugin Analogous to Protégé, we created a similar plugin for OntoWiki
(cf. section 4). OntoWiki is a lightweight ontology editor, which allows distributed and
collaborative editing of knowledge bases. It focuses on wiki-like, simple and intuitive
authoring of semantic content, e.g. through inline editing of RDF content, and provides
different views on instance data.

Recently, a fine-grained plugin mechanism and extensions architecture was added to
OntoWiki. The DL-Learner plugin is technically realised by implementing an OntoWiki
component, which contains the core functionality, and a module, which implements the

31 http://dl-learner.org/wiki/ProtegePlugin
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Fig. 31: The DL-Learner plugin can be invoked from the context menu of a class in
OntoWiki.

UI embedding. The DL-Learner plugin can be invoked from several places in OntoWiki,
for instance through the context menu of classes as shown in Figure 31.

The plugin accesses DL-Learner functionality through its WSDL-based web service
interface. Jar files containing all necessary libraries are provided by the plugin. If a user
invokes the plugin, it scans whether the web service is online at its default address. If
not, it is started automatically.

Fig. 32: Extraction with three starting instances. The circles represent different recur-
sion depths. The circles around the starting instances signify recursion depth 0. The
larger inner circle represents the fragment with recursion depth 1 and the largest outer
circle with recursion depth 2. Figure taken from [55].

A major technical difference compared to the Protégé plugin is that the knowledge
base is accessed via SPARQL, since OntoWiki is a SPARQL-based web application. In
Protégé, the current state of the knowledge base is stored in memory in a Java object. As
a result, we cannot easily apply a reasoner on an OntoWiki knowledge base. To over-
come this problem, we use the DL-Learner fragment selection mechanism described in
[55,56,30]. Starting from a set of instances, the mechanism extracts a relevant fragment
from the underlying knowledge base up to some specified recursion depth. Figure 32



provides an overview of the fragment selection process. The fragment has the property
that learning results on it are similar to those on the complete knowledge base. For a
detailed description we refer the reader to the full article.

The fragment selection is only performed for medium to large-sized knowledge
bases. Small knowledge bases are retrieved completely and loaded into the reasoner.
While the fragment selection can cause a delay of several seconds before the learning
algorithm starts, it also offers flexibility and scalability. For instance, we can learn class
expressions in large knowledge bases such as DBpedia in OntoWiki.32

Fig. 33: Screenshot of the result table of the DL-Learner plugin in OntoWiki.

Figure 33 shows a screenshot of the OntoWiki plugin applied to the SWORE [129]
ontology. Suggestions for learning the class “customer requirement” are shown in
Manchester OWL Syntax. Similar to the Protégé plugin, the user is presented a table
of suggestions along with their accuracy value. Additional details about the instances
of “customer requirement”, covered by a suggested class expressions and additionally
contained instances can be viewed via a toggle button. The modular design of OntoWiki
allows rich user interaction: Each resource, e.g. a class, property, or individual, can be
viewed and subsequently modified directly from the result table as shown for “design
requirement” in the screenshot. For instance, a knowledge engineer could decide to
import additional information available as Linked Data and run the CELOE algorithm
again to see whether different suggestions are provided with additional background
knowledge.

Evaluation To evaluate the suggestions made by our learning algorithm, we tested it
on a variety of real-world ontologies of different sizes and domains. Please note that we

32 OntoWiki is undergoing an extensive development, aiming to support handling such large
knowledge bases. A release supporting this is expected for the first half of 2012.



intentionally do not perform an evaluation of the machine learning technique as such on
existing benchmarks, since we build on the base algorithm already evaluated in detail in
[87]. It was shown that this algorithm is superior to other supervised learning algorithms
for OWL and at least competitive with the state of the art in ILP. Instead, we focus on
its use within the ontology engineering scenario. The goals of the evaluation are to
1. determine the influence of reasoning and heuristics on suggestions, 2. to evaluate
whether the method is sufficiently efficient to work on large real-world ontologies.

To perform the evaluation, we wrote a dedicated plugin for the Protégé ontology
editor. This allows the evaluators to browse the ontology while deciding whether the
suggestions made are reasonable. The plugin works as follows: First, all classes with
at least 5 inferred instances are determined. For each such class, we run CELOE with
different settings to generate suggestions for definitions. Specifically, we tested two
reasoners and five different heuristics. The two reasoners are standard Pellet and Pellet
combined with approximate reasoning (not described in detail here). The five heuristics
are those described in Section 6.3. For each configuration of CELOE, we generate at
most 10 suggestions exceeding a heuristic threshold of 90%. Overall, this means that
there can be at most 2 * 5 * 10 = 100 suggestions per class – usually less, because
different settings of CELOE will still result in similar suggestions. This list is shuffled
and presented to the evaluators. For each suggestion, the evaluators can choose between
6 options (see Table 6):

1 the suggestion improves the ontology (improvement)
2 the suggestion is no improvement and should not be included (not acceptable) and
3 adding the suggestion would be a modelling error (error)

In the case of existing definitions for class A, we removed them prior to learning. In this
case, the evaluator could choose between three further options:

4 the learned definition is equal to the previous one and both are good (equal +)
5 the learned definition is equal to the previous one and both are bad (equal -) and
6 the learned definition is inferior to the previous one (inferior).

We used the default settings of CELOE, e.g. a maximum execution time of 10 sec-
onds for the algorithm. The knowledge engineers were five experienced members of our
research group, who made themselves familiar with the domain of the test ontologies.
Each researcher worked independently and had to make 998 decisions for 92 classes
between one of the options. The time required to make those decisions was approxi-
mately 40 working hours per researcher. The raw agreement value of all evaluators is
0.535 (see e.g. [4] for details) with 4 out of 5 evaluators in strong pairwise agreement
(90%). The evaluation machine was a notebook with a 2 GHz CPU and 3 GB RAM.
33 http://www.mindswap.org/ontologies/SC.owl
34 http://www.sbcny.org/datasets/adhesome.owl
35 http://i2geo.net/ontologies/current/GeoSkills.owl
36 http://www.co-ode.org/ontologies/eukariotic/2005/06/01/eukariotic.owl
37 http://acl.icnet.uk/%7Emw/MDM0.73.owl
38 http://reliant.teknowledge.com/DAML/Economy.owl
39 http://www.ecs.soton.ac.uk/~aoj04r/resist.owl
40 http://www.fadyart.com/Finance.owl
41 http://sweet.jpl.nasa.gov/1.1/earthrealm.owl
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Table 5: Statistics about test ontologies

reasoner/heuristic im
pr

ov
em

en
t

eq
ua

lq
ua

lit
y

(+
)

eq
ua

lq
ua

lit
y

(-
)

in
fe

ri
or

no
ta

cc
ep

ta
bl

e

er
ro

r

m
is

se
d

im
pr

ov
em

en
ts

in
%

se
le

ct
ed

po
si

tio
n

on
su

gg
es

tio
n

lis
t

(i
nc

l.
st

d.
de

vi
at

io
n)

av
g.

ac
cu

ra
cy

of
se

le
ct

ed
su

gg
es

tio
n

in
%

Pellet/F-Measure 16.70 0.44 0.66 0.00 64.66 17.54 14.95 2.82 ± 2.93 96.91
Pellet/Gen. F-Measure 15.24 0.44 0.66 0.11 66.60 16.95 16.30 2.78 ± 3.01 92.76
Pellet/A-Measure 16.70 0.44 0.66 0.00 64.66 17.54 14.95 2.84 ± 2.93 98.59
Pellet/pred. acc. 16.59 0.44 0.66 0.00 64.83 17.48 15.22 2.69 ± 2.82 98.05
Pellet/Jaccard 16.81 0.44 0.66 0.00 64.66 17.43 14.67 2.80 ± 2.91 95.26
Pellet FIC/F-Measure 36.30 0.55 0.55 0.11 52.62 9.87 1.90 2.25 ± 2.74 95.01
Pellet FIC/Gen. F-M. 33.41 0.44 0.66 0.00 53.41 12.09 7.07 1.77 ± 2.69 89.42
Pellet FIC/A-Measure 36.19 0.55 0.55 0.00 52.84 9.87 1.63 2.21 ± 2.71 98.65
Pellet FIC/pred. acc. 32.99 0.55 0.55 0.11 55.58 10.22 4.35 2.17 ± 2.55 98.92
Pellet FIC/Jaccard 36.30 0.55 0.55 0.11 52.62 9.87 1.90 2.25 ± 2.74 94.07
Table 6: Options chosen by evaluators aggregated by class. FIC stands for the fast
instance checker, which is an approximate reasoning procedure.



Table 6 shows the evaluation results. All ontologies were taken from the Protégé
OWL42 and TONES43 repositories. We randomly selected 5 ontologies comprising in-
stance data from these two repositories, specifically the Earthrealm, Finance, Resist,
Economy and Breast Cancer ontologies (see Table 5).

The results in Table 6 show which options were selected by the evaluators. It clearly
indicates that the usage of approximate reasoning is sensible. The results are, however,
more difficult to interpret with regard to the different employed heuristics. Using predic-
tive accuracy did not yield good results and, surprisingly, generalised F-Measure also
had a lower percentage of cases where option 1 was selected. The other three heuristics
generated very similar results. One reason is that those heuristics are all based on pre-
cision and recall, but in addition the low quality of some of the randomly selected test
ontologies posed a problem. In cases of too many very severe modelling errors, e.g. con-
junctions and disjunctions mixed up in an ontology or inappropriate domain and range
restrictions, the quality of suggestions decreases for each of the heuristics. This is the
main reason why the results for the different heuristics are very close. Particularly, gen-
eralised F-Measure can show its strengths mainly for properly designed ontologies. For
instance, column 2 of Table 6 shows that it missed 7% of possible improvements. This
means that for 7% of all classes, one of the other four heuristics was able to find an ap-
propriate definition, which was not suggested when employing generalised F-Measure.
The last column in this table shows that the average value of generalised F-Measure is
quite low. As explained previously, it distinguishes between cases when an individual is
instance of the observed class expression, its negation, or none of both. In many cases,
the reasoner could not detect that an individual is instance of the negation of a class ex-
pression, because of the absence of disjointness axioms and negation in the knowledge
base, which explains the low average values of generalised F-Measure. Column 4 of
Table 6 shows that many selected expressions are amongst the top 5 (out of 10) in the
suggestion list, i.e. providing 10 suggestions appears to be a reasonable choice.

In general, the improvement rate is only at about 35% according to Table 6 whereas
it usually exceeded 50% in preliminary experiments with other real-world ontologies
with fewer or less severe modelling errors. Since CELOE is based on OWL reasoning, it
is clear that schema modelling errors will have an impact on the quality of suggestions.
As a consequence, we believe that the CELOE algorithm should be combined with
ontology debugging techniques. We have obtained first positive results in this direction
and plan to pursue it in future work. However, the evaluation also showed that CELOE
does still work in ontologies, which probably were never verified by an OWL reasoner.

Summary We presented the CELOE learning method specifically designed for extend-
ing OWL ontologies. Five heuristics were implemented and analysed in conjunction
with CELOE along with several performance improvements. A method for approxi-
mating heuristic values has been introduced, which is useful beyond the ontology en-
gineering scenario to solve the challenge of dealing with a large number of examples
in ILP [159]. Furthermore, we biased the algorithm towards short solutions and im-
plemented optimisations to increase readability of the suggestions made. The resulting

42 http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
43 http://owl.cs.manchester.ac.uk/repository/
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algorithm was implemented in the open source DL-Learner framework. We argue that
CELOE is the first ILP based algorithm, which turns the idea of learning class expres-
sions for extending ontologies into practice. CELOE is integrated into two plugins for
the ontology editors Protégé and OntoWiki and can be invoked using just a few mouse
clicks.



7 Linked Data Quality

Linked Open Data (LOD) has provided, over the past several years, an unprecedented
volume of structured data currently amount to 50 billion facts, represented as RDF
triples. Although publishing large amounts of data on the Web is certainly a step in the
right direction, the published data is only as useful as its quality. On the Data Web we
have very varying quality of information covering various domains since data is merged
together from different autonomous evolving data sources on the Web. For example,
data extracted from semi-structured or even unstructured sources, such as DBpedia,
often contains inconsistencies as well as mis-represented and incomplete information.
Despite data quality in LOD being an essential concept, the autonomy and openness of
the information providers makes the web vulnerable to missing, inaccurate, incomplete,
inconsistent or outdated information.

Data quality is commonly conceived as fitness for use [71,158] for a certain appli-
cation or use case. However, even datasets with quality problems might be useful for
certain applications, as long as the quality is in the required range. For example, in the
case of DBpedia the data quality is perfectly sufficient for enriching Web search with
facts or suggestions about common sense information, such as entertainment topics. In
such a scenario, DBpedia can be used to show related movies and personal information,
when a user searches for an actor. In this case, it is rather neglectable, when in relatively
few cases, a related movie or some personal fact is missing. For developing a medical
application, on the other hand, the quality of DBpedia is probably completely insuffi-
cient. It should be noted that even the traditional, document-oriented Web has content
of varying quality and is still perceived to be extremely useful by most people.

Consequently, one of the key challenges is to determine the quality of datasets pub-
lished on the Web and making this quality information explicitly available. Assuring
data quality is particularly a challenge in LOD as it involves a set of autonomously
evolving data sources. Other than on the document Web, where information quality
can be only indirectly (e.g. via page rank) or vaguely defined, there are much more
concrete and measurable data quality metrics available for structured information such
as accuracy of facts, completeness, adequacy of semantic representation or degree of
understandability.

In this chapter, we first define the basic concepts of data quality, then report the
formal definitions of a set of 26 different dimensions along with their respective metrics
identified in [166].

Thereafter, we describe a set of currently available tools specially designed to assess
the quality of Linked Data.

7.1 Data Quality Concepts

In this section, we introduce the basic concepts of data quality to help the readers un-
derstand these terminologies in their consequent usage.

Data Quality. The term data quality is commonly conceived as a multi-dimensional
construct with a popular definition as the "fitness for use" [71]. In case of the Semantic
Web, there are varying concepts of data quality such as the semantic metadata on the



one hand and the notion of link quality on the other. There are several characteristics of
data quality that should be considered i.e. the completeness, accuracy, consistency and
validity on the one hand and the representational consistency, conciseness as well as the
timeliness, understandability, availability and verifiability on the other hand.

Data Quality Problems. A set of issues that can affect the potentiality of the appli-
cations that use the data are termed as data quality problems. The problems may vary
from the incompleteness of data, inconsistency in representation, invalid syntax or in-
accuracy.

Data Quality Dimensions and Metrics. Data quality assessment involves the measure-
ment of quality dimensions (or criteria) that are relevant to the user. A data quality
assessment metric (or measure) is a procedure for measuring an information quality di-
mension [24]. The metrics are basically heuristics designed to fit a specific assessment
situation [88]. Since the dimensions are rather abstract concepts, the assessment metrics
rely on quality indicators that can be used for the assessment of the quality of a data
source w.r.t the criteria [46].

Data Quality Assessment Method. A data quality assessment methodology is the pro-
cess of evaluating if a piece of data meets the information consumers need for a specific
use case [24]. The process involves measuring the quality dimensions that are relevant
to the user and comparing the assessment results with the users quality requirements.

7.2 Linked Data quality dimensions

In [166], a core set of 26 different data quality dimensions were reported that can be
applied to assess the quality of Linked Data. These dimensions are divided into the
following groups:

– Contextual dimensions
– Trust dimensions
– Intrinsic dimensions
– Accessibility dimensions
– Representational dimensions
– Dataset dynamicity

Figure 34 shows the classification of the dimensions into these 6 different groups as
well as the relations between them.

Use case scenario. Since data quality is described as "fitness to use", we introduce
a specific use case that will allow us to illustrate the importance of each dimension with
the help of an example. Our use case is about an intelligent flight search engine, which
relies on acquiring (aggregating) data from several datasets. It obtains information about
airports and airlines from an airline dataset (e.g., OurAirports44, OpenFlights45). In-
formation about the location of countries, cities and particular addresses is obtained

44 http://thedatahub.org/dataset/ourairports
45 http://thedatahub.org/dataset/open-flights
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from a spatial dataset (e.g., LinkedGeoData46). Additionally, aggregators in RDF pull
all the information related to airlines from different data sources (e.g., Expedia47, Tri-
padvisor48, Skyscanner49 etc.) that allows a user to query the integrated dataset for a
flight from any start and end destination for any time period. We will use this scenario
throughout this section as an example of how data quality influences fitness to use.

Contextual dimensions. Contextual dimensions are those that highly depend on the
context of the task at hand as well as on the subjective preferences of the data consumer.
There are three dimensions completeness, amount-of-data and relevancy that are part
of this group.

Definition 8 (Completeness). Completeness refers to the degree to which all required
information is present in a particular dataset. In general, completeness is the extent to

46 linkedgeodata.org
47 http://www.expedia.com/
48 http://www.tripadvisor.com/
49 http://www.skyscanner.de/
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which data is of sufficient depth, breadth and scope for the task at hand. In terms of
Linked Data, we classify completeness as follows:

– Schema completeness, the degree to which the classes and properties of an ontology
are represented, thus can be called "ontology completeness",

– Property completeness, measure of the missing values for a specific property,
– Population completeness, the percentage of all real-world objects of a particular

type that are represented in the datasets and
– Interlinking completeness, which has to be considered especially in Linked Data

and refers to the degree to which instances in the dataset are interlinked.

Metrics. Completeness can be measured by detecting the number of classes, proper-
ties, values and interlinks that are present in the dataset by comparing it to the original
dataset (or gold standard dataset). It should be noted that in this case, users should as-
sume a closed-world-assumption where a gold standard dataset is available and can be
used to compare against.

Example. In the use case, the flight search engine should contain complete infor-
mation so that it includes all offers for flights (population completeness). For exam-
ple, a user residing in Germany wants to visit her friend in America. Since the user
is a student, low price is of high importance. But, looking for flights individually on
the airlines websites shows her flights with very expensive fares. However, using our
flight search engine she finds all offers, even the less expensive ones and is also able
to compare fares from different airlines and choose the most affordable one. The more
complete the information for flights is, including cheap flights, the more visitors the site
attracts. Moreover, sufficient interlinks between the datasets will allow her to query the
integrated dataset so as to find an optimal route from the start to the end destination
(interlinking completeness) in cases when there is no direct flight.

Definition 9 (Amount-of-data). Amount-of-data refers to the quantity and volume of
data that is appropriate for a particular task.

Metrics. The amount-of-data can be measured in terms of bytes (most coarse-
grained), triples, instances, and/or links present in the dataset. This amount should rep-
resent an appropriate volume of data for a particular task, that is, appropriate scope and
level of detail.

Example. In the use case, the flight search engine acquires enough amount of data so
as to cover all, even small, airports. In addition, the data also covers alternative means
of transportation. This helps to provide the user with better travel plans, which includes
smaller cities (airports). For example, when a user wants to travel from Connecticut
to Santa Barbara, she might not find direct or indirect flights by searching individual
flights websites. But, using our example search engine, she is suggested convenient
flight connections between the two destinations, because it contains a large amount of
data so as to cover all the airports. She is also offered convenient combinations of planes,
trains and buses. The provision of such information also necessitates the presence of a
large amount of internal as well as externals links between the datasets so as to provide
a fine grained search for flights between specific places.



Definition 10 (Relevancy). Relevancy refers to the provision of information which is
in accordance with the task at hand and important to the users’ query.

Metrics. Relevancy is highly context dependent and can be measured by using meta-
information attributes for assessing whether the content is relevant for a particular task.
Additionally, retrieval of relevant documents can be performed using a combination of
hyperlink analysis and information retrieval methods.

Example. When a user is looking for flights between any two cities, only relevant
information i.e. start and end times, duration and cost per person should be provided. If
a lot of irrelevant data is included in the spatial data, e.g. post offices, trees etc. (present
in LinkedGeoData), query performance can decrease. The user may thus get lost in the
silos of information and may not be able to browse through it efficiently to get only
what she requires.

Trust dimensions. Trust dimensions are those that focus on the trustworthiness of
the dataset. There are five dimensions that are part of this group, namely, provenance,
verifiability, believability, reputation and licensing.

Definition 11 (Provenance). Provenance refers to the contextual metadata that fo-
cuses on how to represent, manage and use information about the origin of the source.
Provenance helps to describe entities to enable trust, assess authenticity and allow re-
producibility.

Metrics. Provenance can be measured by analyzing the metadata associated with the
source. This provenance information can in turn be used to assess the trustworthiness,
reliability and credibility of a data source, an entity, a publishers or even individual
RDF statements. There exists an inter-dependancy between the data provider and the
data itself. On the one hand, data is likely to be accepted as true if it is provided by a
trustworthy provider. On the other hand, the data provider is trustworthy if it provides
true data. Thus, both can be checked to measure the trustworthiness.

Example. The example flight search engine constitutes information from several air-
line providers. In order to verify the reliability of these different airline data providers,
provenance information from the aggregators can be analyzed and re-used so as enable
users of the flight search engine to trust the authenticity of the data provided to them.

Definition 12 (Verifiability). Verifiability refers to the degree by which a data con-
sumer can assess the correctness of a dataset and as a consequence its trustworthiness.

Metrics. Verifiability can be measured either by an unbiased third party, if the
dataset itself points to the source or by the presence of a digital signature.

Example. In the use case, if we assume that the flight search engine crawls infor-
mation from arbitrary airline websites, which publish flight information according to a
standard vocabulary, there is a risk for receiving incorrect information from malicious
websites. For instance, such a website publishes cheap flights just to attract a large num-
ber of visitors. In that case, the use of digital signatures for published RDF data allows
to restrict crawling only to verified datasets.



Definition 13 (Reputation). Reputation is a judgement made by a user to determine
the integrity of a source. It is mainly associated with a data publisher, a person, organ-
isation, group of people or community of practice rather than being a characteristic of
a dataset. The data publisher should be identifiable for a certain (part of a) dataset.

Metrics. Reputation is usually a score, for example, a real value between 0 (low) and
1 (high). There are different possibilities to determine reputation and can be classified
into manual or (semi-)automated approaches. The manual approach is via a survey in a
community or by questioning other members who can help to determine the reputation
of a source or by the person who published a dataset. The (semi-)automated approach
can be performed by the use of external links or page ranks.

Example. The provision of information on the reputation of data sources allows
conflict resolution. For instance, several data sources report conflicting prices (or times)
for a particular flight number. In that case, the search engine can decide to trust only the
source with a higher reputation.

Definition 14 (Believability). Believability is defined as the degree to which the infor-
mation is accepted to be correct, true, real and credible.

Metrics. Believability is measured by checking whether the contributor is contained
in a list of trusted providers. In Linked Data, believability can be subjectively measured
by analyzing the provenance information of the dataset.

Example. In the flight search engine use case, if the flight information is provided
by trusted and well-known flights companies such as Lufthansa, British Airways, etc.
then the user believes the information provided by their websites. She does not need
to verify their credibility since these are well-known international flight companies. On
the other hand, if the user retrieves information about an airline previously unknown,
she can decide whether to believe this information by checking whether the airline is
well-known or if it is contained in a list of trusted providers. Moreover, she will need to
check the source website from which this information was obtained.

Definition 15 (Licensing). Licensing is defined as a granting of the permission for a
consumer to re-use a dataset under defined conditions.

Metrics. Licensing can be checked by the indication of machine and human read-
able information associated with the dataset clearly indicating the permissions of data
re-use.

Example. Since the example flight search engine aggregates data from several data
sources, a clear indication of the license allows the search engine to re-use the data
from the airlines websites. For example, the LinkedGeoData dataset is licensed under
the Open Database License50, which allows others to copy, distribute and use the data
and produce work from the data allowing modifications and transformations. Due to the
presence of this specific license, the flight search engine is able to re-use this dataset to
pull geo-spatial information and feed it to the search engine.

50 http://opendatacommons.org/licenses/odbl/
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Intrinsic dimensions. Intrinsic dimensions are those that are independent of the user’s
context. These dimensions focus on whether information correctly represents the real
world and whether information is logically consistent in itself. There are five dimen-
sions that are part of this group, namely, accuracy, objectivity, validity-of-documents,
interlinking, consistency and conciseness.

Definition 16 (Accuracy). Accuracy can be defined as the extent to which data is cor-
rect, that is, the degree to which it correctly represents the real world facts and is also
free of error. In particular, we associate accuracy mainly to semantic accuracy which
relates to the correctness of a value to the actual real world value, that is, accuracy of
the meaning.

Metrics. Accuracy can be measured by checking the correctness of the data in a
data source. That is, the detection of outliers or identification of semantically incorrect
values through the violation of functional dependency rules. Accuracy is one of the
dimensions, which is affected by assuming a closed or open world. When assuming an
open world, it is more challenging to assess accuracy, since more logical constraints
need to be specified for inferring logical contradictions.

Example. In the use case, let us suppose that a user is looking for flights between
Paris and New York. Instead of returning flights starting from Paris, France, the search
returns flights between Paris in Texas and New York. This kind of semantic inaccuracy
in terms of labelling as well as classification can lead to erroneous results.

Definition 17 (Objectivity). Objectivity is defined as the degree to which the interpre-
tation and usage of data is unbiased, unprejudiced and impartial. This dimension highly
depends on the type of information and therefore is classified as a subjective dimension.

Metrics. Objectivity can not be measured qualitatively but indirectly by checking
the authenticity of the source responsible for the information, whether the dataset is
neutral or the publisher has a personal influence on the data provided. Additionally, it
can be measured by checking whether independent sources can confirm a single fact.

Example. In the example flight search engine, consider the reviews available for
each airline regarding the safety, comfort and prices. It may happen that an airline be-
longing to a particular alliance is ranked higher than others when in reality it is not so.
This could be an indication of a bias where the review is falsified due to the providers
preference or intentions. This kind of bias or partiality affects the user as she might be
provided with incorrect information from expensive flights or from malicious websites.

Definition 18 (Validity-of-documents). Validity-of-documents refers to the valid us-
age of the underlying vocabularies and the valid syntax of the documents (syntactic
accuracy).

Metrics. A syntax validator can be employed to assess the validity of a document,
i.e. its syntactic correctness. The syntactic accuracy of entities can be measured by de-
tecting the erroneous or inaccurate annotations, classifications or representations. An
RDF validator can be used to parse the RDF document and ensure that it is syntac-
tically valid, that is, to check whether the document is in accordance with the RDF
specification.



Example. Let us assume that the user is looking for flights between two specific
locations, for instance Paris (France) and New York (United States) using the example
flight search engine. However, the user is returned with no results. A possible reason
for this is that one of the data sources incorrectly uses the property geo:lon to specify
the longitude of "Paris" instead of using geo:long. This causes a query to retrieve no
data when querying for flights starting near to a particular location.

Definition 19 (Interlinking). Interlinking refers to the degree to which entities that
represent the same concept are linked to each other.

Metrics. Interlinking can be measured by using network measures that calculate
the interlinking degree, cluster coefficient, sameAs chains, centrality and description
richness through sameAs links.

Example. In the example flight search engine, the instance of the country "United
States" in the airline dataset should be interlinked with the instance "America" in the
spatial dataset. This interlinking can help when a user queries for a flight as the search
engine can display the correct route from the start destination to the end destination
by correctly combining information for the same country from both the datasets. Since
names of various entities can have different URIs in different datasets, their interlinking
can help in disambiguation.

Definition 20 (Consistency). Consistency means that a knowledge base is free of (log-
ical/formal) contradictions with respect to particular knowledge representation and in-
ference mechanisms.

Metrics. On the Linked Data Web, semantic knowledge representation techniques
are employed, which come with certain inference and reasoning strategies for revealing
implicit knowledge, which then might render a contradiction. Consistency is relative to
a particular logic (set of inference rules) for identifying contradictions. A consequence
of our definition of consistency is that a dataset can be consistent wrt. the RDF infer-
ence rules, but inconsistent when taking the OWL2-QL reasoning profile into account.
For assessing consistency, we can employ an inference engine or a reasoner, which sup-
ports the respective expressivity of the underlying knowledge representation formalism.
Additionally, we can detect functional dependency violations such as domain/range vi-
olations. In practice, RDF-Schema inference and reasoning with regard to the different
OWL profiles can be used to measure consistency in a dataset. For domain specific ap-
plications, consistency rules can be defined, for example, according to the SWRL [63]
or RIF standards [72] and processed using a rule engine.

Example. Let us assume a user is looking for flights between Paris and New York
on the 21st of December, 2012. Her query returns the following results:
Flight From To Arrival Departure
A123 Paris NewYork 14:50 22:35
A123 Paris Singapore 14:50 22:35

The results show that the flight number A123 has two different destinations at the same
date and same time of arrival and departure, which is inconsistent with the ontology
definition that one flight can only have one destination at a specific time and date. This
contradiction arises due to inconsistency in data representation, which can be detected
by using inference and reasoning.



Definition 21 (Conciseness). Conciseness refers to the redundancy of entities, be it at
the schema or the data level. Thus, conciseness can be classified into:

– intensional conciseness (schema level) which refers to the redundant attributes and
– extensional conciseness (data level) which refers to the redundant objects.

Metrics. As conciseness is classified in two categories, it can be measured by as the
ratio between the number of unique attributes (properties) or unique objects (instances)
compared to the overall number of attributes or objects respectively present in a dataset.

Example. In the example flight search engine, since data is fused from differ-
ent datasets, an example of intensional conciseness would be a particular flight, say
A123, being represented by two different identifiers in different datasets, such as
http://airlines.org/A123 and http://flights.org/A123. This redundancy
can ideally be solved by fusing the two and keeping only one unique identifier. On the
other hand, an example of extensional conciseness is when both these different iden-
tifiers of the same flight have the same information associated with them in both the
datasets, thus duplicating the information.

Accessibility dimensions. The dimensions belonging to this category involve aspects
related to the way data can be accessed and retrieved. There are four dimensions part of
this group, which are availability, performance, security and response-time.

Definition 22 (Availability). Availability of a dataset is the extent to which information
is present, obtainable and ready for use.

Metrics. Availability of a dataset can be measured in terms of accessibility of the
server, SPARQL endpoints or RDF dumps and also by the dereferencability of the URIs.

Example. Let us consider the case in which the user looks up a flight in the example
flight search engine. However, instead of retrieving the results, she is presented with an
error response code such as 4xx client error. This is an indication that a requested
resource is unavailable. In particular, when the returned error code is 404 Not Found
code, she may assume that either there is no information present at that specified URI or
the information is unavailable. Naturally, an apparently unreliable system is less likely
to be used, in which case the user may not book flights after encountering such issues.

Definition 23 (Performance). Performance refers to the efficiency of a system that
binds to a large dataset, that is, the more performant a data source the more efficiently
a system can process data.

Metrics. Performance is measured based on the scalability of the data source, that is
a query should be answered in a reasonable amount of time. Also, detection of the usage
of prolix RDF features or usage of slash-URIs can help determine the performance of a
dataset. Additional metrics are low latency and high throughput of the services provided
for the dataset.

Example. In the use case example, the target performance may depend on the num-
ber of users, i.e. it may be required to be able to server 100 simultaneous users. Our
flight search engine will not be scalable if the time required to answer to all queries is
similar to the time required when querying the individual datasets. In that case, satisfy-
ing performance needs requires caching mechanisms.



Definition 24 (Security). Security can be defined as the extent to which access to data
can be restricted and hence protected against its illegal alteration and misuse. It refers
to the degree to which information is passed securely from users to the information
source and back.

Metrics. Security can be measured based on whether the data has a proprietor or
requires web security techniques (e.g. SSL or SSH) for users to access, acquire or re-use
the data. The importance of security depends on whether the data needs to be protected
and whether there is a cost of data becoming unintentionally available. For open data the
protection aspect of security can be often neglected but the non-repudiation of the data
is still an important issue. Digital signatures based on private-public key infrastructures
can be employed to guarantee the authenticity of the data.

Example. In the example scenario, let us consider a user who wants to book a flight
from a city A to a city B. The search engine should ensure a secure environment to
the user during the payment transaction since her personal data is highly sensitive. If
there is enough identifiable public information of the user, then she can be potentially
targeted by private businesses, insurance companies etc. which she is unlikely to want.
Thus, the use of SSL can be used to keep the information safe.

Definition 25 (Response-time). Response-time measures the delay, usually in seconds,
between submission of a query by the user and reception of the complete response from
the dataset.

Metrics. Response-time can be assessed by measuring the delay between submis-
sion of a request by the user and reception of the response from the dataset.

Example. A user is looking for a flight which includes multiple destinations using
the example flight search engine. She wants to fly from Milan to Boston, Boston to
New York and New York to Milan. In spite of the complexity of the query the search
engine should respond quickly with all the flight details (including connections) for all
the destinations.

Representational dimensions. Representational dimensions capture aspects related
to the design of the data such as the representational-conciseness, representational-
consistency, understandability, versatility as well as the interpretability of the data.

Definition 26 (Representational-conciseness). Representational-conciseness refers
to the representation of the data which is compact and well formatted on the one hand
but also clear and complete on the other hand.

Metrics. Representational-conciseness is measured by qualitatively verifying
whether the RDF model that is used to represent the data is concise enough in order
to be self-descriptive and unambiguous.

Example. A user, after booking her flight, is interested in additional information
about the destination airport such as its location. Our flight search engine should pro-
vide only that information related to the location rather than returning a chain of other
properties.



Definition 27 (Representational-consistency). Representational-consistency is the
degree to which the format and structure of the information conform to previously
returned information. Since Linked Data involves aggregation of data from multiple
sources, we extend this definition to not only imply compatibility with previous data but
also with data from other sources.

Metrics. Representational-consistency can be assessed by detecting whether the
dataset re-uses existing vocabularies or terms from existing established vocabularies
to represent its entities.

Example. In the use case, consider different airlines companies using different nota-
tion for representing their data, e.g. some use RDF data and some others use turtle. In
order to avoid interoperability issue, we provide data based on the Linked Data princi-
ple which is designed to support heterogeneous description models, which is necessary
to handle different format of data. The exchange of information in different formats will
not be a big deal in our search engine since strong links are created between datasets.

Definition 28 (Understandability). Understandability refers to the ease with which
data can be comprehended, without ambiguity, and used by a human consumer. Thus,
this dimension can also be referred to as the comprehensibility of the information where
the data should be of sufficient clarity in order to be used.

Metrics. Understandability can be measured by detecting whether human-readable
labels for classes, properties and entities are provided. Provision of the metadata of a
dataset can also contribute towards assessing its understandability. The dataset should
also clearly provide exemplary URIs and SPARQL queries along with the vocabularies
used so that can users can understand how it can be used.

Example. Let us assume that the example flight search engine allows a user to enter a
start and destination address. In that case, strings entered by the user need to be matched
to entities in the spatial dataset4, probably via string similarity. Understandable labels
for cities, places etc. improve search performance in that case. For instance, when a user
looks for a flight to U.S (label), then the search engine should return the flights to the
United States or America.

Definition 29 (Interpretability). Interpretability refers to technical aspects of the
data, that is whether information is represented using an appropriate notation and
whether it conforms to the technical ability of the consumer.

Metrics. Interpretability can be measured by the use of globally unique identifiers
for objects and terms or by the use of appropriate language, symbols, units and clear
definitions.

Example. Consider the example flight search engine wherein a user that is looking
for a flight from Milan to Boston. Data related to Boston in the integrated data, for the
required flight, contains the following entities:

– http://rdf.freebase.com/ns/m.049jnng
– http://rdf.freebase.com/ns/m.043j22x
– Boston Logan Airport

http://rdf.freebase.com/ns/m.049jnng
http://rdf.freebase.com/ns/m.043j22x


For the first two items no human-readable label is available, therefore the URI is dis-
played, which does not represent anything meaningful to the user besides the informa-
tion that Freebase contains information about Boston Logan Airport. The third, how-
ever, contains a human-readable label, which the user can easily interpret.

Definition 30 (Versatility). Versatility mainly refers to the alternative representations
of data and its subsequent handling. Additionally, versatility also corresponds to the
provision of alternative access methods for a dataset.

Metrics. Versatility can be measured by the availability of the dataset in different
serialisation formats, different languages as well as different access methods.

Example. Consider a user from a non-English speaking country who wants to use
the example flight search engine. In order to cater to the needs of such users, our flight
search engine should be available in different languages so that any user has the capa-
bility to understand it.

Dataset dynamicity. An important aspect of data is its update or change over time.
The main dimensions related to the dynamicity of a dataset proposed in the literature
are currency, volatility, and timeliness.

Definition 31 (Currency). Currency refers to the speed with which the information
(state) is updated after the real-world information changes.

Metrics. The measurement of currency relies on two components: (i) delivery time
(the time when the data was last modified) and (ii) the current time, both possibly
present in the data models.

Example. Consider a user who is looking for the price of a flight from Milan to
Boston using the example search engine and she receives the updates via email. The
currency of the price information is measured with respect to the last update of the
price information. The email service sends the email with a delay of about 1 hour with
respect to the time interval in which the information is determined to hold. In this way, if
the currency value exceeds the time interval of the validity of the information, the result
is said to be not current. If we suppose validity of the price information (the frequency
of change of the price information) to be 2 hours, the price list that is not changed
within this time is considered to be out-dated. To determine whether the information is
out-dated or not we need to have temporal metadata available and represented by one
of the data models proposed in the literature [133].

Definition 32 (Volatility). Volatility can be defined as the length of time during which
the data remains valid.

Metrics. Volatility can be measured by two components: (i) the expiry time (the
time when the data becomes invalid) and (ii) the input time (the time when the data was
first published on the Web). Both these metrics are combined together to measure the
distance between the expiry time and the input time of the published data.

Example. Let us consider the aforementioned use case where a user wants to book
a flight from Milan to Boston and she is interested in the price information. The price is



considered as volatile information as it changes frequently, for instance it is estimated
that the flight price changes each minute (data remains valid for one minute). In order
to have an updated price list, the price should be updated within the time interval pre-
defined by the system (one minute). In case the user observes that the value is not
re-calculated by the system within the last few minutes, the values are considered to be
out-dated. Notice that volatility is estimated based on changes that are observed related
to a specific data value.

Definition 33 (Timeliness). Timeliness refers to the time point at which the data is
actually used. This can be interpreted as whether the information is available in time
to be useful.

Metrics. Timeliness is measured by combining the two dimensions: currency and
volatility. Additionally timeliness states the recency and frequency of data validation
and does not include outdated data.

Example. A user wants to book a flight from Milan to Boston and the example flight
search engine will return a list of different flight connections. She picks one of them
and follows all the steps to book her flight. The data contained in the airline dataset
shows a flight company that is available according to the user requirements. In terms
of time-related quality dimension, the information related to the flight is recorded and
reported to the user every two minutes which fulfils the requirement decided by our
search engine that corresponds to the volatility of a flight information. Although the
flight values are updated on time, the information received to the user about the flight’s
availability is not on time. In other words, the user did not perceive that the availability
of the flight was depleted because the change was provided to the system a moment
after her search.

7.3 Data quality assessment frameworks

There are several efforts in developing data quality assessment frameworks (method-
ologies) in order to assess the data quality of LOD. These efforts are either semi-
automated [46], automated [51] or manual [24,99,151]. Moreover, there is a lot of
research performed extensively to assess the quality of LOD [60,61] and report com-
monly occurring problems that plague the existing datasets. In this section, we describe
the various existing data quality assessment tools in terms of their usability, level of
user interaction and applicability in terms of data quality assessment, also discussing
their pros and cons.

Semi-automated. Flemming’s data quality assessment tool [46], a semi-automated
framework, is a simple user interface51. The tool presents an evaluation system to the
user where she needs to only enter the SPARQL endpoint and a few example resources
from a dataset. After specifying dataset details (endpoint, graphs, example URIs), the
user is given an option for assigning weights to each of the pre-defined data quality
metrics. Two options are available for assigning weights: (a) assigning a weight of 1

51 Available in German only at: http://linkeddata.informatik.hu-berlin.de/
LDSrcAss/datenquelle.php

http://linkeddata.informatik.hu-berlin.de/LDSrcAss/datenquelle.php
http://linkeddata.informatik.hu-berlin.de/LDSrcAss/datenquelle.php


to all the metrics or (b) choosing the pre-defined exemplary weight of the metrics de-
fined for a semantic data source. In the next step, the user is asked to answer a series
of questions regarding the datasets, which are important indicators of the data quality
for Linked Datasets and those which cannot be quantified. These include, for example,
questions about the use of stable URIs, the number of obsolete classes and properties,
and whether the dataset provides a mailing list. Next, the user is presented with a list of
dimensions and metrics, for each of which weights can be specified again. Each metric
is provided with two input fields: one showing the assigned weights and another with
the calculated value.

In the end, the user is presented with a score ranging from 0 to 100, where 100
represents the best quality, representing the final data quality score. Additionally, the
rating of each dimension and the total weight (based on 11 dimensions) is calculated
using the user input from the previous steps.

On one hand, the tool is easy to use with the form-based questions and adequate
explanation for each step. Also, the assigning of the weights for each metric and the
calculation of the score is straightforward and easy to adjust for each of the metrics.
However, this tool has a few drawbacks: (1) the user needs to have adequate knowledge
about the dataset in order to correctly assign weights for each of the metrics; (2) it
does not drill down to the root cause of the data quality problem and (3) some of the
main quality dimensions are missing from the analysis such as accuracy, completeness,
provenance, consistency, conciseness and relevancy as some could not be quantified
and were not perceived to be true quality indicators.

Automated. The LINK-QA framework [51] takes a set of resources, SPARQL endpoints
and/or dereferencable resources and a set of triples as input to automatically perform
quality assessment and generates an HTML report. However, using this tool, the user
cannot choose the dataset that she is interested in assessing.

Manual. The WIQA [24] and Sieve [99] frameworks also assess the quality of datasets
but require a considerable amount of user involvement and are therefore considered
manual tools. For instance, WIQA provides the user a wide range of policies to filter
information and a set of quality criteria to assess the quality of the information.

Sieve, on the other hand, assists not only in the assessment of the quality of datasets
but also in their fusion. It aims to use the data integration task as a means to increase
completeness, conciseness and consistency in any chosen dataset. Sieve is a component
of the Linked Data Integration Framework (LDIF)52 used first to assess the quality
between two or more data sources and second to fuse (integrate) the data from the data
sources based on their quality assessment.

In order to use this tool, a user needs to be conversant with programming. The input
of Sieve is an LDIF provenance metadata graph generated from a data source. Based
on this information the user needs to set the configuration property in an XML file
known as integration properties. The quality assessment procedure relies on the
measurement of metrics chosen by the user where each metric applies a scoring function
having a value from 0 to 1.

52 http://ldif.wbsg.de/

http://ldif.wbsg.de/


Sieve implements only a few scoring functions such as TimeCloseness,
Preference, SetMembership, Threshold and Interval Membership which are
calculated based on the metadata provided as input along with the original data source.
The configuration file is in XML format which should be modified based on the use
case, as shown in Listing 1.1. The output scores are then used to fuse the data sources by
applying one of the fusion functions, which are: Filter, Average, Max, Min, First,
KeepSingleValue ByQualityScore, Last, Random, PickMostFrequent.

Listing 1.1: A configuration of Sieve: a data quality assessment and data fusion tool.
1 <Sieve>
2 <QualityAssessment >
3 <AssessmentMetric id="sieve:recency">
4 <ScoringFunction class="TimeCloseness">
5 <Param name="timeSpan" value="7"/>
6 <Input path="?GRAPH/provenance:lasUpdated"/>
7 </ScoringFunction >
8 </AssessmentMetric >
9 <AssessmentMetric id="sieve:reputation">

10 <ScoringFunction class="ScoredList">
11 <Param name="priority" value="http://pt.wikipedia.org http://en.wikipedia.org"/>
12 <Input path="?GRAPH/provenance:lasUpdated"/>
13 </ScoringFunction >
14 </AssessmentMetric >
15 </Sieve>

In addition, users should specify the DataSource folder, the homepage element
that refers to the data source from which the entities are going to be fused. Second,
the XML file of the ImportJobs that downloads the data to the server should also
be modified. In particular, the user should set up the dumpLocation element as the
location of the dump file.

Although the tool is very useful overall, there are some drawbacks that decreases
its usability: (1) the tool is not mainly used to assess data quality for a source, but
instead to perform data fusion (integration) based on quality assessment. Therefore,
the quality assessment can be considered as an accessory that leverages the process
of data fusion through evaluation of few quality indicators; (2) it does not provide a
user interface, ultimately limiting its usage to end-users with programming skills; (3)
its usage is limited to domains providing provenance metadata associated with the data
source.

LODGRefine53 [151], a LOD-enabled version of Google Refine, is an open-source
tool for refining messy data. Although this tool is not focused on data quality assess-
ment per se, it is powerful in performing preliminary cleaning or refining of raw data.
Using this tool, one is able to import several different file types of data (CSV, Ex-
cel, XML, RDF/XML, N-Triples or even JSON) and then perform cleaning action via
a browser-based interface. By using a diverse set of filters and facets on individual
columns, LODGRefine can help a user to semi-automate the cleaning of her data.

For example, this tool can help to detect duplicates, discover patterns (e.g. alterna-
tive forms of an abbreviation), spot inconsistencies (e.g. trailing white spaces) or find
and replace blank cells. Additionally, this tool allows users to reconcile data, that is to
connect a dataset to existing vocabularies such that it gives meaning to the values. Rec-

53 http://code.zemanta.com/sparkica/
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onciliations to Freebase54 helps mapping ambiguous textual values to precisely iden-
tified Freebase entities. Reconciling using Sindice or based on standard SPARQL or
SPARQL with full-text search is also possible55 using this tool. Moreover, it is also
possible to extend the reconciled data with DBpedia as well as export the data as RDF,
which adds to the uniformity and usability of the dataset.

These feature thus assists in assessing as well as improving the data quality of a
dataset. Moreover, by providing external links, the interlinking of the dataset is consid-
erably improved. LODGRefine is easy to download and install as well as to upload and
perform basic cleansing steps on raw data. The features of reconciliation, extending the
data with DBpedia, transforming and exporting the data as RDF are added advantages.
However, this tool has a few drawbacks: (1) the user is not able to perform detailed
high level data quality analysis utilizing the various quality dimensions using this tool;
(2) performing cleansing over a large dataset is time consuming as the tool follows a
column data model and thus the user must perform transformations per column.

54 http://www.freebase.com/
55 http://refine.deri.ie/reconciliationDocs
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8 Outlook and Future Challenges

Although the different approaches for aspects of the Linked Data life-cycle as presented
in this chapter are already working together, more effort must be done to further inte-
grate them in ways that they mutually fertilize themselves. The discovery of new links
or the authoring of new resource descriptions, for example, should automatically trigger
the enrichment of the linked knowledge bases. The enrichment in turn can trigger the
application of inconsistency detection and repair techniques. This leads to recognizing
data quality problems and their consequent assessment and improvement. The brows-
ing and exploration paths followed by end-users can be taken into account for machine
learning techniques to refine the knowledge bases etc. Ultimately, when the different
aspects of Linked Data management are fully integrated we envision the Web of Data
becoming a washing machine for knowledge. A progress in one particular aspect will
automatically trigger improvements in many other ones as well. In the following we
outline some research challenges and promising research directions regarding some of
the Linked Data management aspects.

Extraction. One promising research direction with regard to the extraction from un-
structured sources is the development of standardized, LOD enabled integration inter-
faces between existing NLP tools. An open question is whether and how efficient bi-
directional synchronization between extraction source and target knowledge base can
be established. With regard to the extraction from structured sources (e.g. relational,
XML) we need a declarative syntax and semantics for data model transformations.
Some orthogonal challenges include the use of LOD as background knowledge and
the representation and tracing of provenance information.

Authoring. Current Semantic Wikis still suffer from a lack of scalability. Hence, an
important research and development target are large-scale Semantic Wikis, which in-
clude functionality for access control and provenance. In order to further flexibilize and
simplify the authoring an adaptive choreography of editing widgets based on underly-
ing data structures is needed. Also, the joint authoring of unstructured and structured
sources (i.e. HTML/RDFa authoring) and better support for the integrated semantic an-
notation of other modalities such as images, audio, video is of paramount importance.

Natural Language Queries. One of the future challenges for Linked Data is to create
user interfaces, which are able to hide the complexity of the underlying systems. A
possible path towards this goal is question answering, e.g. converting natural language
queries to SPARQL [149,84]. In order to allow users to interact with such systems,
there is ongoing work on converting the created SPARQL queries back to natural lan-
guage [112] and employ feedback mechanisms [83,58]. Ultimately, a goal is to provide
users enhanced functionality without the need to adapt to different kinds of interface.

Automatic Management of Resources for Linking. With the growth of the Cloud and of
the datasets that need to be interlinked, the use of parallel hardware has been studied
over the last few years [59,113]. The comparative study of parallel hardware for link
discovery yet shows surprising results and suggests that the use of massively parallel



yet local hardware can lead to tremendous runtime improvements. Still, when result
sets go beyond sizes of 1010, the higher amount of resources available on remote de-
vices in the Cloud is still to be used. Devising automatic solutions for selecting the right
hardware to run a linking task is one of the most interesting research areas pertaining
to the efficient execution of link specifications. In addition, developing reduction-ratio
optimal algorithms for spaces other than Minkowski spaces promises to ensure the best
possible use of available hardware. Finally, devising more efficient means to combine
single algorithms is the third open area of research in this domain. The challenges faces
with regard to learning link specifications are also manifold and include devising ap-
proaches that can efficiently detected most informative positive and negative examples
as well even running in a fully unsupervised manner on properties that are not one-to-
one relations.

Linked Data Visualization The potential of the vast amount of Linked Data on the Web
is enormous but in most cases it is very difficult and cumbersome for users to visualize,
explore and use this data, especially for lay-users [?] without experience with Semantic
Web technologies. Visualizations are useful for obtaining an overview of the datasets,
their main types, properties and the relationships between them. Compared to prior in-
formation visualization strategies, we have a unique opportunity on the Data Web. The
unified RDF data model being prevalent on the Data Web enables us to bind data to vi-
sualizations in an unforeseen and dynamic way. An information visualization technique
requires certain data structures to be present. When we can derive and generate these
data structures automatically from reused vocabularies or semantic representations, we
are able to realize a largely automatic visualization workflow. Ultimately, various visu-
alizations techniques can develop an ecosystem of data extractions and visualizations,
which can be bound together in a dynamic and unforeseen way. This will enable users
to explore datasets even if the publisher of the data does not provide any exploration or
visualization means. Yet, most existing work related to visualizing RDF is focused on
concrete domains and concrete datatypes.
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