Abstract
In the paper the idea of using the super-resolution algorithms for the self-localization and vision based navigation of autonomous mobile robots is discussed. Since such task is often limited both by the limited resolution of the mounted video camera as well as the available computational resources, a typical approach for video based navigation of mobile robots, similarly as many small flying robots (drones), is using low resolution cameras equipped with average class lenses. The images captured by such video system should be further processed in order to extract the data useful for real-time control of robot’s motion. In some simplified systems such navigation, especially in the within an enclosed environment (interior), is based on the edge and corner detection and binary image analysis, which could be troublesome for low resolution images.
Considering the possibilities of obtaining higher resolution images from low resolution image sequences, the accuracy of such edge and corner detections may be improved by the application of super-resolution algorithms. In order to verify the usefulness of such approach some experiments have been conducted based on the processing of the captured sequences of the HD images further downsampled and reconstructed using the super-resolution algorithms. Obtained results have been reported in the last section of the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chatterjee, A., Rakshit, A., Singh, N.N.: Vision Based Autonomous Robot Navigation. SCI, vol. 455. Springer, Heidelberg (2013)
DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation: A survey. IEEE Trans. Pattern Anal. Machine Intell. 24(2), 237–267 (2002)
Dalgleish, F.R., Tetlow, S.W., Allwood, R.L.: Vision-based navigation of unmanned underwater vehicles: A survey. Part I: vision based cable-, pipeline- and fish tracking. Proc. Inst. Marine Engineering, Science and Technology. Part B, Journal of Marine Design and Operations B(7), 51–56 (2004)
Dalgleish, F.R., Tetlow, S.W., Allwood, R.L.: Vision-based navigation of unmanned underwater vehicles: A survey. Part II: vision based station keeping and positioning. Proc. Inst. Marine Engineering, Science and Technology. Part B, Journal of Marine Design and Operations B(8), 13–19 (2004)
Chang, C.-K., Siagian, C., Itti, L.: Mobile robot vision navigation & localization using Gist and Saliency. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 4147–4154 (2010)
Se, S., Lowe, D., Little, J.: Vision-based global localization and mapping for mobile robots. IEEE Trans. Robotics 21(3), 364–375 (2005)
Bonon-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: A survey. Journal of Intelligent and Robotic Systems 53(3), 263–296 (2008)
Vandewalle, P., Süsstrunk, S., Vetterli, M.: A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP Journal on Applied Signal Processing, Article ID 71459, 14 (2006)
Lucchese, L., Cortelazzo, G.M.: A noise-robust frequency domain technique for estimating planar roto-translations. IEEE Trans. Signal Process. 48(6), 1769–1786 (2000)
Keren, D., Peleg, S., Brada, R.: Image sequence enhancement using sub-pixel displacement. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 742–746 (1988)
Irani, M., Peleg, S.: Super resolution from image sequences. In: Proc. IEEE Int. Conf. Pattern Recognition, vol. 2, pp. 115–120 (1990)
Irani, M., Peleg, S.: Improving resolution by image registration. Graphical Models and Image Processing 53(3), 231–239 (1991)
Chatterjee, P., Mukherjee, S., Chaudhuri, S., Seetharaman, G.: Application of Papoulis-Gerchberg method in image super-resolution and inpainting. Comput. J. 52(1), 80–89 (2009)
Zomet, A., Rav-Acha, A., Peleg, S.: Robust super-resolution. In: Proc. Int. Conf. Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 645–650 (2001)
Pham, T.Q., van Vliet, L.J., Schutte, K.: Robust fusion of irregularly sampled data using adaptive normalized convolution. EURASIP Journal on Applied Signal Processing, Article ID 83268, 12 p. (2006)
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: From error measurement to Structural Similarity. IEEE Trans. Image Proc. 13(4), 600–612 (2004)
Li, C., Bovik, A.: Three-component weighted Structural Similarity index. In: Proc. SPIE. Image Quality and System Performance VI, vol. 7242, p. 72420Q (2009)
Khursheed, K., Imran, M., Ahmad, N., O’Nils, M.: Bi-level video codec for machine vision embedded applications. Elektronika Ir Elektrotechnika 19(8), 93–96 (2013)
Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27(8), 861–874 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Okarma, K., Tecław, M., Lech, P. (2015). Application of Super-Resolution Algorithms for the Navigation of Autonomous Mobile Robots. In: Choraś, R. (eds) Image Processing & Communications Challenges 6. Advances in Intelligent Systems and Computing, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-319-10662-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-10662-5_18
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10661-8
Online ISBN: 978-3-319-10662-5
eBook Packages: EngineeringEngineering (R0)