Skip to main content

The Impact of the Image Feature Detector and Descriptor Choice on Visual SLAM Accuracy

  • Conference paper
Image Processing & Communications Challenges 6

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 313))

Abstract

The paper presents an evaluation of a range of contemporary image feature detectors and descriptors for the mobile robot visual simultaneous localization and mapping. The analysis of the impact of the detector and descriptor choice on the accuracy of robot trajectory reconstruction was performed using precise ground truth data. Moreover, as processing time is an important, the average computation times for each of the detector-descriptor pairs are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast Retina Keypoint. In: Proc. of Int. Conf. on Computer Vision and Pattern Recognition, pp. 510–517 (2012)

    Google Scholar 

  3. Aans, H., Dahl, A.L., Pedersen, K.S.: Interesting Interest Points - A Comparative Study of Interest Point Performance on a Unique Data Set. International Journal of Computer Vision 97, 18–35 (2011)

    Article  Google Scholar 

  4. Ballesta, M., Gil, A., Martnez, O., Reinoso, M.O.: Local Descriptors for Visual SLAM. In: Proc. Workshop on Robotics and Mathematics (2007)

    Google Scholar 

  5. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  6. Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: BRIEF: Computing a Local Binary Descriptor Very Fast. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(7), 1281–1298 (2012)

    Article  Google Scholar 

  7. Dahl, A.L., Aans, H., Pedersen, K.S.: Finding the Best Feature Detector Descriptor Combination. In: Proc. of Int. Conf. on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 318–325 (2011)

    Google Scholar 

  8. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: Real-Time Single Camera SLAM. IEEE Transactions on PAMI 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  9. Fraundorfer, F., Scaramuzza, D.: Visual Odometry: Part II - Matching, Robustness, and Applications. IEEE Robotics and Automation Magazine 19(2) (2012)

    Google Scholar 

  10. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  11. Klippenstein, J., Zhang, H.: Quantitative Evaluation of Feature Extractors for Visual SLAM. In: Proc. of the 4 th Canadian Conf. on Comp. and Robot Vision, pp. 157–164 (2007)

    Google Scholar 

  12. Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary Robust Invariant Scalable Keypoints. In: Proc. of Int. Conv. on Computer Vision, pp. 2548–2555 (2011)

    Google Scholar 

  13. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Mozos, Ó.M., Gil, A., Ballesta, M., Reinoso, O.: Interest Point Detectors for Visual SLAM. In: Borrajo, D., Castillo, L., Corchado, J.M. (eds.) CAEPIA 2007. LNCS (LNAI), vol. 4788, pp. 170–179. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: An efficient alternative to SIFT or SURF. In: Proc. of Int. Conv. on Computer Vision, pp. 2564–2571 (2011)

    Google Scholar 

  17. Schmidt, A., Kraft, M., KasiÅ„ski, A.: An evaluation of image feature detectors and descriptors for robot navigation. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part II. LNCS, vol. 6375, pp. 251–259. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Shi, J., Tomasi, C.: Good Features to Track. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  19. Sturm, J., Magnenat, S., Engelhard, N., Pomerleau, F., Colas, F., Burgard, W., Cremers, D., Siegwart, R.: Towards a benchmark for RGB-D SLAM evaluation. In: Robotics: Science and Systems Conference (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schmidt, A., Kraft, M. (2015). The Impact of the Image Feature Detector and Descriptor Choice on Visual SLAM Accuracy. In: ChoraÅ›, R. (eds) Image Processing & Communications Challenges 6. Advances in Intelligent Systems and Computing, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-319-10662-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10662-5_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10661-8

  • Online ISBN: 978-3-319-10662-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics