Skip to main content

Multi-value Numerical Methods for Hamiltonian Systems

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications - ENUMATH 2013

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 103))

Abstract

We discuss the effectiveness of multi-value numerical methods in the numerical treatment of Hamiltonian problems. Multi-value (or general linear) methods extend the well-known families of Runge-Kutta and linear multistep methods and can be considered as a general framework for the numerical solution of ordinary differential equations. There are some features that needs to be achieved by reliable geometric numerical integrators based on multi-value methods: G-symplecticity, symmetry and boundedness of the parasitic components. In particular, we analyze the effects of the mentioned features for the long term conservation of the energy and provide the numerical evidence confirming the theoretical expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd edn. (Wiley, Chichester, 2008)

    Book  MATH  Google Scholar 

  2. J.C. Butcher, Dealing with parasitic behaviour in G-symplectic integrators, in Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, ed. by R. Ansorge, H. Bijl, A. Meister, T. Sonar. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 120 (Springer, Heidelberg, 2013) pp. 105–123

    Google Scholar 

  3. J.C. Butcher, Y. Habib, A. Hill, T. Norton, The control of parasitism in G-symplectic methods. Submitted for publication

    Google Scholar 

  4. J.C. Butcher, L.L. Hewitt, The existence of symplectic general linear methods. Numer. Algorithms 51, 77–84 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. J.C. Butcher, A. Hill, Linear multistep methods as irreducible general linear methods. BIT Numer. Math. 46(1), 5–19 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Conte, R. D’Ambrosio, Z. Jackiewicz, B. Paternoster, Numerical search for algebraically stable two-step continuous Runge-Kutta methods. J. Comput. Appl. Math. 239, 304–321 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. R. D’Ambrosio, On the G-symplecticity of two-step Runge-Kutta methods. Commun. Appl. Ind. Math. (2012). doi: 10.1685/journal.caim.403

    Google Scholar 

  8. R. D’Ambrosio, G. De Martino, B. Paternoster, Construction of nearly conservative multivalue numerical methods for Hamiltonian problems. Commun. Appl. Ind. Math. (2012). doi: 10.1685/journal.caim.412

    Google Scholar 

  9. R. D’Ambrosio, G. De Martino, B. Paternoster, Numerical integration of Hamiltonian problems by G-symplectic methods. Adv. Comput. Math. 40(2), 553–575 (2014)

    MATH  MathSciNet  Google Scholar 

  10. R. D’Ambrosio, E. Esposito, B. Paternoster, General linear methods for y″ = f(y(t)). Numer. Algorithms 61(2), 331–349 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. R. D’Ambrosio, E. Hairer, Long-term stability of multi-value methods for ordinary differential equations. J. Sci. Comput. (2013). doi: 10.1007/s10915-013-9812-y

    Google Scholar 

  12. R. D’Ambrosio, E. Hairer, C.J. Zbinden, G-symplecticity implies conjugate-symplecticity of the underlying one-step method. BIT Numer. Math. 53(4), 867–872 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. R. D’Ambrosio, G. Izzo, Z. Jackiewicz, Search for highly stable two-step Runge-Kutta methods for ODEs. Appl. Numer. Math. 62(10), 1361–1379 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Hairer, P. Leone, Order barriers for symplectic multi-value methods, in Proceedings of the 17th Dundee Biennial Conference 1997, ed. by F. Griffiths, D.J. Higham, G.A. Watson. Pitman Research Notes in Mathematics Series, vol. 380 (Longman, Harlow, 1998), pp. 133–149

    Google Scholar 

  15. E. Hairer, C. Lubich, Symmetric multistep methods over long times. Numer. Math. 97, 699–723 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. (Springer, Berlin, 2006)

    Google Scholar 

  17. Z. Jackiewicz, General Linear Methods for Ordinary Differential Equations (Wiley, Hoboken, 2009)

    Book  MATH  Google Scholar 

  18. F.M. Lasagni, Canonical Runge-Kutta methods. Z. Angew. Math. Phys. 39, 952–953 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Leone, Symplecticity and symmetry of general integration methods, Ph.D. thesis, Universite de Geneve, (2000)

    Google Scholar 

  20. R.I. McLachlan, G.R.W. Quispel, Geometric integrators for ODEs. J. Phys. A: Math. Gen. 39, 5251–5285 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. J.M. Sanz-Serna, M.P. Calvo, Numerical Hamiltonian Problems (Chapman & Hall, London, 1994)

    Book  MATH  Google Scholar 

  22. Y.B. Suris, Preservation of symplectic structure in the numerical solution of Hamiltonian systems (in Russian). Akad. Nauk SSSR, Inst. Prikl. Mat., 148–160, 232, 238–239 (1988)

    Google Scholar 

  23. Y.F. Tang, The simplecticity of multistep methods. Comput. Math. Appl. 25(3), 83–90 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele D’Ambrosio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

D’Ambrosio, R. (2015). Multi-value Numerical Methods for Hamiltonian Systems. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds) Numerical Mathematics and Advanced Applications - ENUMATH 2013. Lecture Notes in Computational Science and Engineering, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-10705-9_18

Download citation

Publish with us

Policies and ethics