Skip to main content

A Local Projection Stabilization FEM for the Linearized Stationary MHD Problem

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications - ENUMATH 2013

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 103))

  • 3305 Accesses

Abstract

We present a local projection stabilization (LPS) type finite element (FE) method for the linearized stationary magnetohydrodynamics (MHD) problem. In contrast to the residual-based stabilization in Badia et al. (J Comput Phys 234:399–416, 2013; Analysis of an unconditionally convergent stabilized finite element formulation for incompressible magnetohydrodynamics, submitted), we investigate a symmetric LPS method comparable to the term-by-term stabilization in Badia et al. (Int J Numer Methods Eng 93:302–328, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Badia, R. Codina, R. Planas, On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics. J. Comput. Phys. 234, 399–416 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Badia, R. Codina, R. Planas, Analysis of an unconditionally convergent stabilized finite element formulation for incompressible magnetohydrodynamics. Ach. Comp. Meth. Eng. (2014)

    Google Scholar 

  3. S. Badia, R. Planas, J.V. Gutierrez-Santacreu, Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics (MHD) system discretized by a stabilized finite element formulation based on projections. Int. J. Numer. Methods Eng. 93, 302–328 (2013)

    Article  MathSciNet  Google Scholar 

  4. H. Dallmann, D. Arndt, G. Lube, Some remarks on local projection stabilization for the Oseen problem. NAM-Preprint, University of Göttingen. (2014). http://num.math.un-goettingen.de/lube/DAL-Oseen-final.pdf

  5. V. Girault, R. Scott, A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40, 1–19 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Matthies, P. Skrzypacz, L. Tobiska, A unified convergence analysis for local projection stabilization applied to the Oseen problem. Math. Model. Numer. Anal. 41(4), 713–742 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Lube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wacker, B., Lube, G. (2015). A Local Projection Stabilization FEM for the Linearized Stationary MHD Problem. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds) Numerical Mathematics and Advanced Applications - ENUMATH 2013. Lecture Notes in Computational Science and Engineering, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-10705-9_76

Download citation

Publish with us

Policies and ethics