Abstract
We present a local projection stabilization (LPS) type finite element (FE) method for the linearized stationary magnetohydrodynamics (MHD) problem. In contrast to the residual-based stabilization in Badia et al. (J Comput Phys 234:399–416, 2013; Analysis of an unconditionally convergent stabilized finite element formulation for incompressible magnetohydrodynamics, submitted), we investigate a symmetric LPS method comparable to the term-by-term stabilization in Badia et al. (Int J Numer Methods Eng 93:302–328, 2013).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. Badia, R. Codina, R. Planas, On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics. J. Comput. Phys. 234, 399–416 (2013)
S. Badia, R. Codina, R. Planas, Analysis of an unconditionally convergent stabilized finite element formulation for incompressible magnetohydrodynamics. Ach. Comp. Meth. Eng. (2014)
S. Badia, R. Planas, J.V. Gutierrez-Santacreu, Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics (MHD) system discretized by a stabilized finite element formulation based on projections. Int. J. Numer. Methods Eng. 93, 302–328 (2013)
H. Dallmann, D. Arndt, G. Lube, Some remarks on local projection stabilization for the Oseen problem. NAM-Preprint, University of Göttingen. (2014). http://num.math.un-goettingen.de/lube/DAL-Oseen-final.pdf
V. Girault, R. Scott, A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40, 1–19 (2003)
G. Matthies, P. Skrzypacz, L. Tobiska, A unified convergence analysis for local projection stabilization applied to the Oseen problem. Math. Model. Numer. Anal. 41(4), 713–742 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wacker, B., Lube, G. (2015). A Local Projection Stabilization FEM for the Linearized Stationary MHD Problem. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds) Numerical Mathematics and Advanced Applications - ENUMATH 2013. Lecture Notes in Computational Science and Engineering, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-10705-9_76
Download citation
DOI: https://doi.org/10.1007/978-3-319-10705-9_76
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10704-2
Online ISBN: 978-3-319-10705-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)