Skip to main content

Stopping Criteria for Multimodal Optimization

  • Conference paper
Parallel Problem Solving from Nature – PPSN XIII (PPSN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8672))

Included in the following conference series:

Abstract

Multimodal optimization requires maintenance of a good search space coverage and approximation of several optima at the same time. We analyze two constitutive optimization algorithms and show that in many cases, a phase transition occurs at some point, so that either diversity collapses or optimization stagnates. But how to derive suitable stopping criteria for multimodal optimization? Experimental results indicate that an algorithm’s population contains sufficient information to estimate the point in time when several performance indicators reach their optimum. Thus, stopping criteria are formulated based on summary characteristics employing objective values and mutation strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Das, S., Maity, S., Qu, B.Y., Suganthan, P.N.: Real-parameter evolutionary multimodal optimization – a survey of the state-of-the-art. Swarm and Evolutionary Computation 1(2), 71–88 (2011)

    Article  Google Scholar 

  2. Wessing, S., Preuss, M., Rudolph, G.: Niching by multiobjectivization with neighbor information: Trade-offs and benefits. In: IEEE Congress on Evolutionary Computation (CEC), pp. 103–110 (2013)

    Google Scholar 

  3. Preuss, M., Wessing, S.: Measuring multimodal optimization solution sets with a view to multiobjective techniques. In: Emmerich, M., Deutz, A., Schütze, O., Bäck, T., Tantar, E., Tantar, A.A., Moral, P.D., Legrand, P., Bouvry, P., Coello, C.A. (eds.) EVOLVE – A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. AISC, vol. 227, pp. 123–137. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 16(4), 504–522 (2012)

    Article  Google Scholar 

  5. Stoean, C., Preuss, M., Stoean, R., Dumitrescu, D.: Multimodal optimization by means of a topological species conservation algorithm. IEEE Transactions on Evolutionary Computation 14(6), 842–864 (2010)

    Article  Google Scholar 

  6. Beyer, H.G., Schwefel, H.P.: Evolution strategies – a comprehensive introduction. Natural Computing 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tran, T.D., Brockhoff, D., Derbel, B.: Multiobjectivization with NSGA-II on the noiseless BBOB testbed. In: Proceeding of the Fifteenth Annual Conference companion on Genetic and Evolutionary Computation Conference Companion, GECCO 2013 Companion, pp. 1217–1224. ACM (2013)

    Google Scholar 

  8. Wagner, T., Trautmann, H., Martí, L.: A taxonomy of online stopping criteria for multi-objective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 16–30. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Trautmann, H., Wagner, T., Naujoks, B., Preuss, M., Mehnen, J.: Statistical methods for convergence detection of multi-objective evolutionary algorithms. Evolutionary Computation Journal 17(4), 493–509 (2009)

    Article  Google Scholar 

  10. Hernandez, G., Wilder, K., Nino, F., Garcia, J.: Towards a self-stopping evolutionary algorithm using coupling from the past. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 615–620. ACM (2005)

    Google Scholar 

  11. Safe, M., Carballido, J.A., Ponzoni, I., Brignole, N.B.: On stopping criteria for genetic algorithms. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 405–413. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Zielinski, K., Laur, R.: Stopping criteria for a constrained single-objective particle swarm optimization algorithm. Informatica 31(1), 51–59 (2007)

    MATH  Google Scholar 

  13. Hoos, H.H., Stützle, T.: Stochastic Local Search – Foundations and Applications. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  14. Sastry, K.: Single and multiobjective genetic algorithm toolbox for Matlab in C++. Technical Report 2007017, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wessing, S., Preuss, M., Trautmann, H. (2014). Stopping Criteria for Multimodal Optimization. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics