Skip to main content

Distance-Based Analysis of Crossover Operators for Many-Objective Knapsack Problems

  • Conference paper
Parallel Problem Solving from Nature – PPSN XIII (PPSN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8672))

Included in the following conference series:

  • 2970 Accesses

Abstract

It has been reported for multi-objective knapsack problems that the recombination of similar parents often improves the performance of evolutionary multi-objective optimization (EMO) algorithms. Recently performance improvement was also reported by exchanging only a small number of genes between two parents (i.e., crossover with a very small gene exchange probability) without choosing similar parents. In this paper, we examine these performance improvement schemes through computational experiments where NSGA-II is applied to 500-item knapsack problems with 2-10 objectives. We measure the parent-parent distance and the parent-offspring distance in computational experiments. Clear performance improvement is observed when the parent-offspring distance is small. To further examine this observation, we implement a distance-based crossover operator where the parent-offspring distance is specified as a user-defined parameter. Performance of NSGA-II is examined for various parameter values. Experimental results show that an appropriate parameter value (parent-offspring distance) is surprisingly small. It is also shown that a very small parameter value is beneficial for diversity maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective Selection based on Dominated Hypervolume. European J. of Operational Research 181, 1653–1669 (2007)

    Article  MATH  Google Scholar 

  2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  3. Ishibuchi, H., Akedo, N., Nojima, Y.: Recombination of Similar Parents in SMS-EMOA on Many-Objective 0/1 Knapsack Problems. In: Coello Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 132–142. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Ishibuchi, H., Akedo, N., Nojima, Y.: Relation between Neighborhood Size and MOEA/D Performance on Many-Objective Problems. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 459–474. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of Multi-Objective Evolutionary Algorithms on Many-Objective Knapsack Problems. IEEE Trans. on Evolutionary Computation (in press)

    Google Scholar 

  6. Ishibuchi, H., Narukawa, K., Tsukamoto, N., Nojima, Y.: An Empirical Study on Similarity-Based Mating for Evolutionary Multiobjective Combinatorial Optimization. European J. of Operational Research 188, 57–75 (2008)

    Article  MATH  Google Scholar 

  7. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary Many-Objective Optimization: A Short Review. In: Proc. of IEEE CEC, pp. 2424–2431 (2008)

    Google Scholar 

  8. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Diversity Improvement by Non-Geometric Binary Crossover in Evolutionary Multiobjective Optimization. IEEE Trans. on Evolutionary Computation 14, 985–998 (2010)

    Article  Google Scholar 

  9. Jaszkiewicz, A.: On the Computational Efficiency of Multiple Objective Metaheuristics: The Knapsack Problem Case Study. European J. of Operational Research 158, 418–433 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Moraglio, A., Poli, R.: Topological Interpretation of Crossover. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1377–1388. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Moraglio, A., Poli, R.: Product Geometric Crossover. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN IX. LNCS, vol. 4193, pp. 1018–1027. Springer, Heidelberg (2006)

    Google Scholar 

  12. Moraglio, A., Poli, R.: Inbreeding Properties of Geometric Crossover and Non-geometric Recombinations. In: Stephens, C.R., Toussaint, M., Whitley, L.D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 1–14. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Sato, H., Aguirre, H.E., Tanaka, K.: Local Dominance and Local Recombination in MOEAs on 0/1 Multiobjective Knapsack Problems. European J. of Operational Research 181, 1708–1723 (2007)

    Article  MATH  Google Scholar 

  14. Sato, H., Aguirre, H., Tanaka, K.: Variable Space Diversity, Crossover and Mutation in MOEA Solving Many-Objective Knapsack Problems. Annals of Mathematics and Artificial Intelligence 68, 197–224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. While, L., Bradstreet, L., Barone, L.: A Fast Way of Calculating Exact Hypervolumes. IEEE Trans. on Evolutionary Computation 16, 86–95 (2012)

    Article  Google Scholar 

  16. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. on Evolutionary Computation 11, 712–731 (2007)

    Article  Google Scholar 

  17. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3, 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ishibuchi, H., Tanigaki, Y., Masuda, H., Nojima, Y. (2014). Distance-Based Analysis of Crossover Operators for Many-Objective Knapsack Problems. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_59

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics