Skip to main content

A Geometrical Approach to the Incompatible Substructure Problem in Parallel Self-Assembly

  • Conference paper
Parallel Problem Solving from Nature – PPSN XIII (PPSN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8672))

Included in the following conference series:

Abstract

The inherent massive parallelism of self-assembly is one of its most appealing attributes for autonomous construction. One challenge in parallel self-assembly is to reduce the number of incompatible substructures that can occur in order to increase the yield in target structures. Early studies demonstrated how a simple approach to component design led components to self-assemble into incompatible substructures. Approaches have been proposed to reduce the number of incompatible substructures by increasing component complexity (e.g. using mechanical switches to determine substructure conformation). In this work, we show how a geometrical approach to self-assembling target structures from the inside-out eliminates incompatible substructures and increases yield. The advantages of this approach includes the simplicity of component design, and the incorporation of additional techniques to reduce component interaction errors. An experiment using millimeter-scale, 3D printed components is used to provide physical evidence to support our geometrical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci. U.S.A. 106(15), 6054–6059 (2009)

    Article  Google Scholar 

  2. Bhalla, N., Bentley, P.J., Vize, P.D., Jacob, C.: Staging the self-assembly process: Inspiration from biological development. Artificial Life 20(1), 29–53 (2014)

    Article  Google Scholar 

  3. Bhalla, N., Ipparthi, D., Klemp, E., Dorigo, M.: A geometrical approach to the incompatible substructure problem in parallel self-assembly: supplementary material. Tech. Rep. TR/IRIDIA/2014-010, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2014)

    Google Scholar 

  4. Dagliyan, O., Shirvanyants, D., Karginov, A.V., Dinga, F., Feea, L., Chandrasekarana, S.N., Freisingerd, C.M., Smolend, G.A., Huttenlocherd, A., Hahnc, K.M., Dokholyana, N.V.: Rational design of a ligand-controlled protein conformational switch. Proc. Natl. Acad. Sci. U.S.A. 110(17), 6800–6804 (2013)

    Article  Google Scholar 

  5. Gautam, V.K., Haddow, P.C., Kuiper, M.: Reliable self-assembly by self-triggered activation of enveloped DNA tiles. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 68–79. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Hettmansperger, T.P., McKean, J.W.: Robust nonparametric statistical methods. Chapman & Hall/CRC Press, Boca Rotan (2010)

    Book  Google Scholar 

  7. Hosokawa, K., Shimoyama, I., Miura, H.: Dynamics of self-assembling systems: Analogy with chemical kinetics. Artificial Life 1(4), 413–427 (1994)

    Article  Google Scholar 

  8. Klavins, E.: Programmable self-assembly. IEEE Control Systems Magazine 27(4), 43–56 (2007)

    Article  MathSciNet  Google Scholar 

  9. Mastrangeli, M., Abbasi, S., Van Hoof, C., Celis, J.P., Böhringer, K.F.: Self-assembly from milli- to nanoscales: methods and applications. Journal of Micromechanics and Microengineering 19(8), 1–37 (2009)

    Article  Google Scholar 

  10. Mendes, A.C., Baran, E.T., Reis, R.L., Azevedo, H.S.: Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. WIREs Nanomedicine and Nanobiotechnology 5(6), 582–612 (2013)

    Article  Google Scholar 

  11. Miyashita, S., Nagy, Z., Nelson, B.J., Pfeifer, R.: The influence of shape on parallel self-assembly. Entropy 11(4), 643–666 (2009)

    Article  Google Scholar 

  12. Pelesko, J.A.: Self Assembly: The Science of Things that Put Themselves Together. Chapman & Hall/CRC Press, Boca Rotan (2007)

    Book  Google Scholar 

  13. Saitou, K.: Conformational switching in self-assembling mechanical systems. IEEE Transactions on Robotics and Automation 15(3), 510–520 (1999)

    Article  Google Scholar 

  14. Schneiter, A.A., Miller, J.F.: Description of sunflower growth stages. Crop Science 21(6), 901–903 (1981)

    Article  Google Scholar 

  15. Whitesides, G.M., Boncheva, M.: Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. U.S.A. 99(8), 4769–4774 (2002)

    Article  Google Scholar 

  16. Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295(5564), 2418–2421 (2002)

    Article  Google Scholar 

  17. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bhalla, N., Ipparthi, D., Klemp, E., Dorigo, M. (2014). A Geometrical Approach to the Incompatible Substructure Problem in Parallel Self-Assembly. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_74

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics