Abstract
This work provides an extensive analysis of flight parameter estimation using various neural networks trained by differential evolution, consisting of 12,000 parallel optimization runs. The neural networks were trained on data recorded during student flights stored in the National General Aviation Flight Database (NGAFID), and as such consist of noisy, realistic general aviation flight data. Our results show that while backpropagation via gradient and conjugate gradient descent is insufficient to train the neural networks, differential evolution can provide strong predictors of certain flight parameters (10% over a baseline prediction for airspeed and 70% for altitude), given the four input parameters of airspeed, altitude, pitch and roll. Mean average error ranged between 0.08% for altitude to 2% for roll. Cross validation of the best neural networks indicate that the trained neural networks have predictive power. Further, they have potential to act as overall descriptors of the flights and can potentially be used to detect anomalous flights, even determining which flight parameters are causing the anomaly. These initial results provide a step towards providing effective predictors of general aviation flight behavior, which can be used to develop warning and predictive maintenance systems, reducing accident rates and saving lives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aircraft Owners and Pilots Association (AOPA) (January 2014)
Arenas, M., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, B., Preuß, M., Schoenauer, M.: A framework for distributed evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer, Heidelberg (2002)
Bartz-Beielstein, T.: SPOT: An R package for automatic and interactive tuning of optimization algorithms by sequential parameter optimization. arXiv preprint arXiv:1006.4645 (2010)
Bengio, Y.: Learning deep architectures for ai. Foundations and trends® in Machine Learning 2(1), 1–127 (2009)
Cahon, S., Melab, N., Talbi, E.-G.: Paradiseo: A framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)
Cantu-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis 10(2), 141–171 (1998)
Crone, S.F., Hibon, M., Nikolopoulos, K.: Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. International Journal of Forecasting 27(3), 635–660 (2011)
Desell, T.: Asynchronous Global Optimization for Massive Scale Computing. PhD thesis, Rensselaer Polytechnic Institute (2009)
Desell, T., Anderson, D., Magdon-Ismail, M., Heidi Newberg, B.S., Varela, C.: An analysis of massively distributed evolutionary algorithms. In: The 2010 IEEE Congress on Evolutionary Computation (IEEE CEC 2010), Barcelona, Spain (July 2010)
Desell, T., Szymanski, B., Varela, C.: Asynchronous genetic search for scientific modeling on large-scale heterogeneous environments. In: 17th International Heterogeneity in Computing Workshop, Miami, Florida (April 2008)
Desell, T., Varela, C., Szymanski, B.: An asynchronous hybrid genetic-simplex search for modeling the Milky Way galaxy using volunteer computing. In: Genetic and Evolutionary Computation Conference (GECCO), Atlanta, Georgia (July 2008)
Elias, B.: Securing general aviation. DIANE Publishing (2009)
Huang, W., Santhanaraman, G., Jin, H.-W., Gao, Q., Panda, D.K.: Design of high performance MVAPICH2: MPI2 over InfiniBand. In: Sixth IEEE International Symposium on Cluster Computing and the Grid, CCGRID 2006, vol. 1, pp. 43–48. IEEE (2006)
Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance. In: Proc. of ICML 2014 (to appear, 2014)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)
Khashei, M., Bijari, M.: A novel hybridization of artificial neural networks and arima models for time series forecasting. Applied Soft Computing 11(2), 2664–2675 (2011)
Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J.: Opt4j: a modular framework for meta-heuristic optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1723–1730. ACM, New York (2011)
MathWorks. Global optimization toolbox (March 2013) (accessed online)
Mezura-Montes, E., Velazquez-Reyes, J., Coello Coello, C.C.A.: Modified differential evolution for constrained optimization. In: IEEE Congress on Evolutionary Computation 2006, CEC 2006, Vancouver, BC, pp. 25–32 (July 2006)
Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: Deoptim: An r package for global optimization by differential evolution. Journal of Statistical Software 40(6), 1–26 (2011)
National Transportation Safety Board (NTSB) (2012)
Ömer Faruk, D.: A hybrid neural network and arima model for water quality time series prediction. Engineering Applications of Artificial Intelligence 23(4), 586–594 (2010)
Schwefel, H.-P.: Evolution and Optimization Seeking. John Wiley & Sons, New York (1995)
Shetty, K.I.: Current and historical trends in general aviation in the United States. PhD thesis, Massachusetts Institute of Technology Cambridge, MA 02139 USA (2012)
Szymanski, B.K., Desell, T., Varela, C.: The effects of heterogeneity on asynchronous panmictic genetic search. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 457–468. Springer, Heidelberg (2008)
Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)
Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: Jclec: a java framework for evolutionary computation. Soft Computing-A Fusion of Foundations, Methodologies and Applications 12(4), 381–392 (2008)
Wei, W.W.-S.: Time series analysis. Addison-Wesley, Redwood City (1994)
Zhang, G.P.: Neural networks for time-series forecasting. In: Handbook of Natural Computing, pp. 461–477. Springer (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Desell, T., Clachar, S., Higgins, J., Wild, B. (2014). Evolving Neural Network Weights for Time-Series Prediction of General Aviation Flight Data. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_76
Download citation
DOI: https://doi.org/10.1007/978-3-319-10762-2_76
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10761-5
Online ISBN: 978-3-319-10762-2
eBook Packages: Computer ScienceComputer Science (R0)