Skip to main content

Evolving Neural Network Weights for Time-Series Prediction of General Aviation Flight Data

  • Conference paper
Parallel Problem Solving from Nature – PPSN XIII (PPSN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8672))

Included in the following conference series:

  • 3002 Accesses

Abstract

This work provides an extensive analysis of flight parameter estimation using various neural networks trained by differential evolution, consisting of 12,000 parallel optimization runs. The neural networks were trained on data recorded during student flights stored in the National General Aviation Flight Database (NGAFID), and as such consist of noisy, realistic general aviation flight data. Our results show that while backpropagation via gradient and conjugate gradient descent is insufficient to train the neural networks, differential evolution can provide strong predictors of certain flight parameters (10% over a baseline prediction for airspeed and 70% for altitude), given the four input parameters of airspeed, altitude, pitch and roll. Mean average error ranged between 0.08% for altitude to 2% for roll. Cross validation of the best neural networks indicate that the trained neural networks have predictive power. Further, they have potential to act as overall descriptors of the flights and can potentially be used to detect anomalous flights, even determining which flight parameters are causing the anomaly. These initial results provide a step towards providing effective predictors of general aviation flight behavior, which can be used to develop warning and predictive maintenance systems, reducing accident rates and saving lives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aircraft Owners and Pilots Association (AOPA) (January 2014)

    Google Scholar 

  2. Arenas, M., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, B., Preuß, M., Schoenauer, M.: A framework for distributed evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Bartz-Beielstein, T.: SPOT: An R package for automatic and interactive tuning of optimization algorithms by sequential parameter optimization. arXiv preprint arXiv:1006.4645 (2010)

    Google Scholar 

  4. Bengio, Y.: Learning deep architectures for ai. Foundations and trends® in Machine Learning 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cahon, S., Melab, N., Talbi, E.-G.: Paradiseo: A framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)

    Article  Google Scholar 

  6. Cantu-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis 10(2), 141–171 (1998)

    Google Scholar 

  7. Crone, S.F., Hibon, M., Nikolopoulos, K.: Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. International Journal of Forecasting 27(3), 635–660 (2011)

    Article  Google Scholar 

  8. Desell, T.: Asynchronous Global Optimization for Massive Scale Computing. PhD thesis, Rensselaer Polytechnic Institute (2009)

    Google Scholar 

  9. Desell, T., Anderson, D., Magdon-Ismail, M., Heidi Newberg, B.S., Varela, C.: An analysis of massively distributed evolutionary algorithms. In: The 2010 IEEE Congress on Evolutionary Computation (IEEE CEC 2010), Barcelona, Spain (July 2010)

    Google Scholar 

  10. Desell, T., Szymanski, B., Varela, C.: Asynchronous genetic search for scientific modeling on large-scale heterogeneous environments. In: 17th International Heterogeneity in Computing Workshop, Miami, Florida (April 2008)

    Google Scholar 

  11. Desell, T., Varela, C., Szymanski, B.: An asynchronous hybrid genetic-simplex search for modeling the Milky Way galaxy using volunteer computing. In: Genetic and Evolutionary Computation Conference (GECCO), Atlanta, Georgia (July 2008)

    Google Scholar 

  12. Elias, B.: Securing general aviation. DIANE Publishing (2009)

    Google Scholar 

  13. Huang, W., Santhanaraman, G., Jin, H.-W., Gao, Q., Panda, D.K.: Design of high performance MVAPICH2: MPI2 over InfiniBand. In: Sixth IEEE International Symposium on Cluster Computing and the Grid, CCGRID 2006, vol. 1, pp. 43–48. IEEE (2006)

    Google Scholar 

  14. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance. In: Proc. of ICML 2014 (to appear, 2014)

    Google Scholar 

  15. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  16. Khashei, M., Bijari, M.: A novel hybridization of artificial neural networks and arima models for time series forecasting. Applied Soft Computing 11(2), 2664–2675 (2011)

    Article  Google Scholar 

  17. Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J.: Opt4j: a modular framework for meta-heuristic optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1723–1730. ACM, New York (2011)

    Google Scholar 

  18. MathWorks. Global optimization toolbox (March 2013) (accessed online)

    Google Scholar 

  19. Mezura-Montes, E., Velazquez-Reyes, J., Coello Coello, C.C.A.: Modified differential evolution for constrained optimization. In: IEEE Congress on Evolutionary Computation 2006, CEC 2006, Vancouver, BC, pp. 25–32 (July 2006)

    Google Scholar 

  20. Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: Deoptim: An r package for global optimization by differential evolution. Journal of Statistical Software 40(6), 1–26 (2011)

    Google Scholar 

  21. National Transportation Safety Board (NTSB) (2012)

    Google Scholar 

  22. Ömer Faruk, D.: A hybrid neural network and arima model for water quality time series prediction. Engineering Applications of Artificial Intelligence 23(4), 586–594 (2010)

    Article  Google Scholar 

  23. Schwefel, H.-P.: Evolution and Optimization Seeking. John Wiley & Sons, New York (1995)

    Google Scholar 

  24. Shetty, K.I.: Current and historical trends in general aviation in the United States. PhD thesis, Massachusetts Institute of Technology Cambridge, MA 02139 USA (2012)

    Google Scholar 

  25. Szymanski, B.K., Desell, T., Varela, C.: The effects of heterogeneity on asynchronous panmictic genetic search. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 457–468. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)

    Google Scholar 

  27. Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: Jclec: a java framework for evolutionary computation. Soft Computing-A Fusion of Foundations, Methodologies and Applications 12(4), 381–392 (2008)

    Google Scholar 

  28. Wei, W.W.-S.: Time series analysis. Addison-Wesley, Redwood City (1994)

    Google Scholar 

  29. Zhang, G.P.: Neural networks for time-series forecasting. In: Handbook of Natural Computing, pp. 461–477. Springer (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Desell, T., Clachar, S., Higgins, J., Wild, B. (2014). Evolving Neural Network Weights for Time-Series Prediction of General Aviation Flight Data. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_76

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics