Skip to main content

Maximizing Submodular Functions under Matroid Constraints by Multi-objective Evolutionary Algorithms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8672))

Abstract

Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a multi-objective evolutionary algorithm called GSEMO until it has obtained a good approximation for submodular functions. For the case of monotone submodular functions and uniform cardinality constraints we show that GSEMO achieves a (1 − 1/e)-approximation in expected time \(\mathcal{O}(n^2\,(\log n+k))\), where k is the value of the given constraint. For the case of non-monotone submodular functions with k matroid intersection constraints, we show that GSEMO achieves a 1/(k + 2 + 1/k + ε)-approximation in expected time \(\mathcal{O}(n^{k+5}\log (n) / \varepsilon )\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ageev, A.A., Sviridenko, M.: An 0.828-approximation algorithm for the uncapacitated facility location problem. Discrete Applied Mathematics 93(2-3), 149–156 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies – a comprehensive introduction. Natural Computing 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bringmann, K., Friedrich, T.: An efficient algorithm for computing hypervolume contributions. Evolutionary Computation 18(3), 383–402 (2010)

    Article  Google Scholar 

  4. Bringmann, K., Friedrich, T., Klitzke, P.: Generic postprocessing via subset selection for hypervolume and epsilon-indicator. In: Bartz-Beielstein, T., et al. (eds.) PPSN XIII 2014. LNCS, vol. 8672, pp. 518–527. Springer, Heidelberg (2014)

    Google Scholar 

  5. Bringmann, K., Friedrich, T., Klitzke, P.: Two-dimensional subset selection for hypervolume and epsilon-indicator. In: Annual Conference on Genetic and Evolutionary Computation (GECCO). ACM Press (2014b)

    Google Scholar 

  6. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: On the effects of adding objectives to plateau functions. IEEE Transactions on Evolutionary Computation 13(3), 591–603 (2009)

    Article  Google Scholar 

  7. Cornuejols, G., Fisher, M., Nemhauser, G.L.: On the uncapacitated location problem. In: Studies in Integer Programming. Annals of Discrete Mathematics, vol. 1, pp. 163–177. Elsevier (1977)

    Google Scholar 

  8. Doerr, B., Kodric, B., Voigt, M.: Lower bounds for the runtime of a global multi-objective evolutionary algorithm. In: IEEE Congress on Evolutionary Computation (CEC), pp. 432–439 (2013)

    Google Scholar 

  9. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feige, U., Goemans, M.X.: Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT. In: 3rd Israel Symposium on Theory and Computing Systems (ISTCS), pp. 182–189 (1995)

    Google Scholar 

  11. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. Evolutionary Computation 18(4), 617–633 (2010)

    Article  Google Scholar 

  12. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1918–1925 (2003)

    Google Scholar 

  13. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective optimisation. Evolutionary Computation 18(3), 335–356 (2010)

    Article  Google Scholar 

  14. Glasmachers, T.: Optimized approximation sets of low-dimensional benchmark pareto fronts. In: Bartz-Beielstein, T., et al. (eds.) PPSN XIII 2014. LNCS, vol. 8672, pp. 569–578. Springer, Heidelberg (2014)

    Google Scholar 

  15. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Halperin, E., Zwick, U.: Combinatorial approximation algorithms for the maximum directed cut problem. In: Twelfth Annual Symposium on Discrete Algorithms (SODA), pp. 1–7 (2001)

    Google Scholar 

  17. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J., Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Advances in estimation of distribution algorithms, pp. 75–102. Springer (2006)

    Google Scholar 

  18. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 4th edn. Springer (2007)

    Google Scholar 

  21. Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the vertex cover problem. Algorithmica 65(4), 754–771 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laumanns, M., Thiele, L., Zitzler, E., Welzl, E., Deb, K.: Running time analysis of multi-objective evolutionary algorithms on a simple discrete optimization problem. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 44–53. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: Forty-First Annual ACM Symposium on Theory of Computing (STOC), pp. 323–332 (2009)

    Google Scholar 

  24. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4), 623–642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lovász, L.: Submodular functions and convexity. In: Bachem, A., Korte, B., Grötschel, M. (eds.) Mathematical Programming: The State of the Art. Springer (1983)

    Google Scholar 

  26. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maximizing submodular set functions I. Mathematical Programming 14(1), 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a submodular set function. Mathematics of Operations Research 3(3), 177–188 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. Natural Computing 5(3), 305–319 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimization problems. Algorithmica 57(1), 187–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schrijver, A.: Combinatorial Optimization – Polyhedra and Efficiency. Springer (2003)

    Google Scholar 

  31. Ulrich, T., Thiele, L.: Bounding the effectiveness of hypervolume-based (μ + λ)-archiving algorithms. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219, pp. 235–249. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Friedrich, T., Neumann, F. (2014). Maximizing Submodular Functions under Matroid Constraints by Multi-objective Evolutionary Algorithms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_91

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics