Abstract
We present a method to cluster time series according to the calculation of the pairwise Kendall distribution function between them. A case study with environmental data illustrates the introduced methodology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Liao, T.W.: Clustering of time series data - a survey. Pattern Recogn. 38(11), 1857–1874 (2005)
Embrechts, P., McNeil, A.J., Straumann, D.: Correlation and Dependence in Risk Management: Properties and Pitfalls. Cambridge Univ. Press, New York (2001)
Poulin, A., Huard, D., Favre, A.-C., Pugin, S.: Importance of tail dependence in bivariate frequency analysis. J. Hydrol. Eng. 12, 394–403 (2007)
Gudendorf, G., Segers, J.: Extreme-value copulas. In: Jaworski, P., Durante, F., Härdle, W., Rychlik, T. (eds.) Copula Theory and its Applications. Lecture Notes in Statistics - Proceedings, vol. 198, pp. 127–145. Springer, Heidelberg (2010)
Salvadori, G., De Michele, C., Kottegoda, N.T., Rosso, R.: Extremes in Nature. An Approach Using Copulas. Water Sci. and Technology Library 56. Springer (2007)
Jaworski, P.: Tail behaviour of copulas. In: Jaworski, P., Durante, F., Härdle, W., Rychlik, T. (eds.) Copula Theory and its Applications. Lecture Notes in Statistics - Proceedings, vol. 198, pp. 161–186. Springer, Heidelberg (2010)
Gaetan, C., Grigoletto, M.: A hierarchical model for the analysis of spatial rainfall extremes. J. ABES 12(4), 434–449 (2007)
Scotto, M.G., Barbosa, S.M., Alonso, A.M.: Extreme value and cluster analysis of European daily temperature series. Journal of Applied Statistics 38(12), 2793–2804 (2011)
Favre, A.-C., Adlouni, S.E., Perreault, L., Thiemonge, N., Bobee, B.: Multivariate hydrological frequency analysis using copulas. Water Resour. Res. 40 (2004)
Salvadori, G., De Michele, C.: Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour. Res. 40 (2004)
Bárdossy, A.: Copula-based geostatistical models for groundwater quality parameters. Water Resour. Res. 42(11) (2006)
Bonazzi, A., Cusack, S., Mitas, C., Jewson, S.: The spatial structure of European wind storms as characterized by bivariate extreme-value Copulas. Nat. Hazards Earth Syst. Sci. 12, 1769–1782 (2012)
Genest, C., Favre, A.-C.: Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrologic Eng. 12(4), 347–368 (2007)
Durante, F., Pappadà, R., Torelli, N.: Clustering of financial time series in risky scenarios. Adv. Data Anal. Classif. (2013) (in press), doi: 10.1007/s11634-013-0160-4
De Luca, G., Zuccolotto, P.: A tail dependence-based dissimilarity measure for financial time series clustering. Adv. Data Anal. Classif. 5(4), 323–340 (2011)
Durante, F., Pappadà, R., Torelli, N.: Clustering of extreme observations via tail dependence estimation. Statist. Papers (in press, 2014)
Buishand, T., de Haan, L., Zhou, C.: On spatial extremes: With application to a rainfall problem. Ann. Appl. Statist. 2, 624–642 (2008)
Cooley, D., Naveau, P., Poncet, P.: Variograms for spatial max-stable random fields. In: Dependence in Probability and Statistics. Lectures Notes in Statistics, pp. 373–390. Springer, Heidelberg (2006)
Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Amer. Statist. Assoc. 102, 824–840 (2007)
Robeson, S.M., Doty, J.A.: Identifying rogue air temperature stations using cluster analysis of percentile trends. J. Climate 18, 1275–1287 (2005)
Scotto, M.G., Alonso, A.M., Barbosa, S.M.: Clustering time series of sea levels: Extreme value approach. J. Waterway, Port, Coastal, and Ocean Engrg. 136, 215–225 (2010)
Salvadori, G., De Michele, C., Durante, F.: On the return period and design in a multivariate framework. Hydrol. Earth Syst. Sci. 15, 3293–3305 (2011)
Salvadori, G., Durante, F., De Michele, C.: Multivariate return period calculation via survival functions. Water Resour. Res. 49(4), 2308–2311 (2013)
Salvadori, G., Durante, F., Perrone, E.: Semi–parametric approximation of the Kendall’s distribution and multivariate return periods. J. SFdS 154(1), 151–173 (2013)
Genest, C., Rivest, L.-P.: Statistical inference procedures for bivariate Archimedean copulas. J. Amer. Statist. Assoc. 88(423), 1034–1043 (1993)
Genest, C., Rivest, L.-P.: On the multivariate probability integral transformation. Statist. Probab. Lett. 53(4), 391–399 (2001)
Capéraà, P., Fougères, A.-L., Genest, C.: A stochastic ordering based on a decomposition of Kendall’s tau. In: Beneš, V., Štěpán, J (Eds.) Distributions with Given Marginals and Moment Problems. Kluwer Academic Publishers, Dordrecht, pp. 81–86
Nelsen, R.B., Quesada–Molina, J.J., Rodríguez–Lallena, J.A., Úbeda–Flores, M.: Kendall distribution functions. Statist. Probab. Lett. 65, 263–268 (2003)
Genest, C., Nešlehová, G., Ziegel, J., Inference, J.: in multivariate Archimedean copula models. TEST 20, 223–256 (2011)
Barbe, P., Genest, C., Ghoudi, K., Rémillard, B.: On Kendall’s process. J. Multivar. Anal. 58(1996), 197–229 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Durante, F., Pappadà, R. (2015). Cluster Analysis of Time Series via Kendall Distribution. In: Grzegorzewski, P., Gagolewski, M., Hryniewicz, O., Gil, M. (eds) Strengthening Links Between Data Analysis and Soft Computing. Advances in Intelligent Systems and Computing, vol 315. Springer, Cham. https://doi.org/10.1007/978-3-319-10765-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-10765-3_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10764-6
Online ISBN: 978-3-319-10765-3
eBook Packages: EngineeringEngineering (R0)