Abstract
The present work describes the automatic recognition of named entities based on language independent and dependent features. Margin Infused Relaxed Algorithm is applied for the first time in order to learn named entities for Bengali language. We used openly available annotated corpora with twelve different tagset defined in IJCNLP-08 NERSSEAL shared task and obtained 91.23%, 87.29% and 89.69% precision, recall and F-measure respectively. The proposed work outperforms the existing models with satisfactory margin.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bandyopadhyay, S.: Multilingual Named Entity Recognition. In: Proceedings of the IJCNLP 2008 Workshop on NER for South and South East Asian Languages, Hyderabad, India (2008)
Ralph, G.: The New York University System MUC-6 or Whereās the syntax? In: Proceedings of Message Understanding Conference (1995)
McDonald, D.: Internal and external evidence in the identification and semantic categorization of proper names. In: Boguraev, B., Pustejovsky, J. (eds.) Corpus Processing for Lexical Acquisition, pp. 21ā39 (1996)
Takahiro, W., Gaizauskas, R., Wilks, Y.: Evaluation of an algorithm for the recognition and classification of proper names. In: Proceedings of COLING (1996)
Hewavitharana, S., Vogel, S.: Extracting parallel phrases from comparable data. In: Proceedings of the Workshop on Building and Using Comparable Corpora, ACL, Portland, Oregon, pp. 61ā68 (2011)
Bikel, D.M., Scott, M., Richard, S., Ralph, S.: Nymble: A High Performance Learning Name-finder. In: Proceedings of Applied Natural Language Processing, Hyderabad, India, pp. 194ā201 (1997)
Wei, L., Andrew, M.: Rapid Development of Hindi Named Entity Recognition using Conditional Random Fields and Feature Induction. ACM Transactions on Computational Logic (2004)
Hiroyasu, Y., Kudo, T., Matsumoto, Y.: Japanese Named Entity Extraction using Support Vector Machine. Transactions of IPSJ 43(1), 44ā53 (2002)
Andrew, B.: A Maximum Entropy Approach to Named Entity Recognition. Ph.D. Thesis, New York University (1999)
Saha, S.K., Chatterji, S., Dantapat, S., Sarkar, S., Mitra, P.: A Hybrid Approach for Named Entity Recognition in Indian Languages. In: NERSSEAL-IJCNLP 2008, Hyderabad, India, pp. 17ā24 (2008)
Sharma, P., Sharma, U., Kalita, J.: Named Entity Recognition: A Survey for the Indian Languages. In: Parsing in Indian Languages, pp. 35ā39 (2011)
Ekbal, A., Haque, R., Das, A., Bandyopadhyay, S.: Language Independent Named Entity Recognition in Indian Languages. In: Proceedings of the NERSSEAL-IJCNLP 2008, Hyderabad, India, pp. 33ā40 (2008)
Ekbal, A., Saha, S.: Weighted Vote Based Classifier Ensemble Selection Using Genetic Algorithm for Named Entity Recognition. In: Hopfe, C.J., Rezgui, Y., MĆ©tais, E., Preece, A., Li, H. (eds.) NLDB 2010. LNCS, vol. 6177, pp. 256ā267. Springer, Heidelberg (2010)
Ekbal, A., Saha, S.: Classifier Ensemble using Multiobjective Optimization for Named Entity Recognition. In: European Conference on Artificial Intelligence (ECAI 2010), Lisbon, Portugal, pp. 783ā788 (2010)
Ekbal, A., Saha, S.: Maximum Entropy Classifier Ensembling using Genetic Algorithm for NER in Bengali. In: International Conference on Language Resources and Evaluation (LREC 2010), Malta (2010)
Ekbal, A., Bandyopadhyay, S.: Maximum Entropy Approach for Named Entity Recognition in Bengali. In: Proceedings of International Symposium on Natural Language Processing (SNLP 2007), Thailand, pp. 1ā6 (2007)
Ekbal, A., Bandyopadhyay, S.: Bengali Named Entity Recognition using Support Vector Machine. In: NERSSEAL-IJCNLP 2008, Hyderabad, India, pp. 51ā58 (2008)
Ekbal, A., Bandyopadhyay, S.: Voted NER System using Appropriate Unlabeled Data. In: Named Entities Workshop: Shared Task on Transliteration (NEWS 2009), ACL-IJCNLP, Singapore, pp. 202ā210 (2009)
Chaudhuri, B., Bhattacharya, S.: An Experiment on Automatic Detection of Named Entities in Bangla. In: NERSSEAL-IJCNLP 2008, Hyderabad, India, pp. 75ā82 (2008)
Gali, K., Surana, H., Vaidya, A., Shishtla, P., Sharma, D.M.: Aggregating Machine Learning and Rule Based Heuristics for Named Entity Recognition. In: NERSSEAL-IJCNLP 2008, Hyderabad, India, pp. 25ā32 (2008)
Ganchev, K., Pereira, F., Mandel, M., Carroll, S., WhiteCrammer, P., Singer, Y.: Semi-automated named entity annotation. In: Proceedings of the Linguistic Annotation Workshop, pp. 53ā56. ACL (2007)
Crammer, K., Singer, Y.: Ultraconservative Online Algorithms for Multiclass Problems. Journal of Machine Learning Research, 951ā991 (2003)
Singh, A.K.: Named Entity Recognition for South and South East Asian Languages: Taking Stock. In: NERSSEAL-IJCNLP 2008, Hyderabad, India (2008)
Ekbal, A., Bandyopadhyay, S.: Named entity recognition using support vector machine: A language independent approach. International Journal of Electrical, Computer, and Systems Engineering 4(2), 155ā170 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Banerjee, S., Naskar, S.K., Bandyopadhyay, S. (2014). Bengali Named Entity Recognition Using Margin Infused Relaxed Algorithm. In: Sojka, P., HorĆ”k, A., KopeÄek, I., Pala, K. (eds) Text, Speech and Dialogue. TSD 2014. Lecture Notes in Computer Science(), vol 8655. Springer, Cham. https://doi.org/10.1007/978-3-319-10816-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-10816-2_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10815-5
Online ISBN: 978-3-319-10816-2
eBook Packages: Computer ScienceComputer Science (R0)