Skip to main content

Using Graph Transformation Algorithms to Generate Natural Language Equivalents of Icons Expressing Medical Concepts

  • Conference paper
Text, Speech and Dialogue (TSD 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8655))

Included in the following conference series:

  • 1545 Accesses

Abstract

A graphical language addresses the need to communicate medical information in a synthetic way. Medical concepts are expressed by icons conveying fast visual information about patients’ current state or about the known effects of drugs. In order to increase the visual language’s acceptance and usability, a natural language generation interface is currently developed. In this context, this paper describes the use of an informatics method – graph transformation – to prepare data consisting of concepts in an OWL-DL ontology for use in a natural language generation component. The OWL concept may be considered as a star-shaped graph with a central node. The method transforms it into a graph representing the deep semantic structure of a natural language phrase. This work may be of future use in other contexts where ontology concepts have to be mapped to half-formalized natural language expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lamy, J.-B., Duclos, C., Bar-Hen, A., Ouvrard, P., Venot, A.: An iconic language for the graphical representation of medical concepts. BMC Med. Inform. Decis. Mak. 8 (16) (2008)

    Google Scholar 

  2. Welty, C., McGuinness, D.L., Smith, M.K.: OWL web ontology language guide. W3C Recommandation. W3C (2004), http://www.w3.org/TR/owl-guide/

  3. Wilcock, G.: Talking OWLs: Towards an ontology verbalizer. In: Proc. ISWC Workshop on Human Language Technology for the Semantic Web and Web Services, pp. 109–112 (2003)

    Google Scholar 

  4. Hewlett, D., Kalyanpur, A., Kolovski, V., Halaschek-Wiener, C.: Effective NL paraphrasing of ontologies on the semantic web. In: Proc. ISWC Workshop on End User Semantic Web Interaction, vol. 172. CEUR-WS.org (2005)

    Google Scholar 

  5. Bontcheva, K., Wilks, Y.: Automatic report generation from ontologies: the MIAKT approach. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 324–335. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Sowa, J.: Conceptual structures: information processing in mind and machine. Addison Wesley, New York (1984)

    MATH  Google Scholar 

  7. Rector, A.L., Bechhofer, S., Goble, C.A., Horrocks, I., Nowlan, W.A., Solomon, W.D.: The GRAIL concept modelling language for medical terminology. Artif. Intell. Med. 9(2), 139–171 (1997)

    Article  Google Scholar 

  8. Ehrig, H., Habel, A., Kreowski, H.J.: Introduction to Graph Grammars with Applications to Semantic Networks. Comput. Math. Appl. 23(6-9), 557–572 (1992)

    Article  MATH  Google Scholar 

  9. Schürr, A., Winter, A.J., Zündorf, A.: Graph grammar engineering with PROGRES. In: Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp. 219–234. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  10. Blostein, D., Fahmy, H., Grbavec, A.: Issues in the practical use of graph rewriting. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 38–55. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  11. Schabes, Y., Abeillé, A., Joshi, A.K.: Parsing strategies with ‘lexicalized’ grammars: application to Tree Adjoining Grammars. In: COLING 1988: Proc. 12th International Conference on Computational Linguistics, Budapest, August 22-27, pp. 578–583 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Vaillant, P., Lamy, JB. (2014). Using Graph Transformation Algorithms to Generate Natural Language Equivalents of Icons Expressing Medical Concepts. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech and Dialogue. TSD 2014. Lecture Notes in Computer Science(), vol 8655. Springer, Cham. https://doi.org/10.1007/978-3-319-10816-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10816-2_43

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10815-5

  • Online ISBN: 978-3-319-10816-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics