Abstract
Nowadays, modern visualization and decision support platforms provide advanced and interactive tools for data wrangling, in order to facilitate data analysis. Nonetheless, it is a tedious process that requires a deep experience in data transformation. In this paper, we propose an automated data wrangling method, based on a genetic algorithm, that helps to obtain simpler regression trees.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bache, K., Lichman, M.: UCI machine learning repository (2013)
Bdack, T., Hoffmeister, F., Schwefel, H.P.: A survey of evolution strategies (1991)
Breiman, L., et al.: Classification and Regression Trees. Chapman & Hall (1984)
Engels, R., Theusinger, C.: Using a data metric for preprocessing advice for data mining applications. In: ECAI, pp. 430–434 (1998)
Kandel, S., Heer, J., Plaisant, C., Kennedy, J., van Ham, F., Riche, N.H., Weaver, C., Lee, B., Brodbeck, D., Buono, P.: Research directions in data wrangling: Visualizations and transformations for usable and credible data. Inf. Vis. 10(4), 271–288 (2011)
Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: Interactive visual specification of data transformation scripts. In: Proceedings of the SIGCHI Conference on H.F.C.S., CHI 2011, NY, USA, pp. 3363–3372 (2011)
Kotsiantis, S.B.: Decision trees: a recent overview. Artificial Intelligence Review 39(4), 261–283 (2013)
Parisot, O., Bruneau, P., Didry, Y., Tamisier, T.: User-driven data preprocessing for decision support. In: Luo, Y. (ed.) CDVE 2013. LNCS, vol. 8091, pp. 81–84. Springer, Heidelberg (2013)
Torgo, L.: http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
Wang, S., Wang, H.: Mining data quality in completeness. In: ICIQ, pp. 295–300 (2007)
Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Elsevier (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Parisot, O., Didry, Y., Tamisier, T. (2014). Data Wrangling: A Decisive Step for Compact Regression Trees. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2014. Lecture Notes in Computer Science, vol 8683. Springer, Cham. https://doi.org/10.1007/978-3-319-10831-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-10831-5_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10830-8
Online ISBN: 978-3-319-10831-5
eBook Packages: Computer ScienceComputer Science (R0)