Abstract
A wireless network may include fixed nodes and mobile nodes that change the location during data transmission. The node mobility influences heavily the operation of a wireless network, as the signal propagation conditions depend on the location of the nodes and may cause dramatic changes in the data transmission rates and packet error rates. Because the network performance is influenced by the location and signal propagation conditions between network nodes, accurate representation of the user mobility in the wireless network analysis is a crucial element in both simulation and numerical or analytical modelling. This chapter discusses mobility models used in simulating network behaviour. Further, the handover optimization and prediction are discussed, along with alternative methods of radio signal propagation changes caused by client mobility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali, T., Saquib, M., Sengupta, C.: Vertical handover analysis for voice over WLAN/cellular network. In: Proceedings of the IEEE International Conference on Communications, pp. 1–5 (2010)
Atkinson, R.P.D., Rhodes, C.J., Macdonald, D.W., Anderson, R.M.: Scale-free dynamics in the movement patterns of jackals. OIKOS 98(1), 134–140 (2002)
Bai, F., Helmy, A.: A survey of mobility models. Wireless Adhoc Networks, vol. 206. University of Southern California, USA (2004)
Barabási, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005)
Bettstetter, C.: Mobility modelling in wireless networks: categorization, smooth movement, and border effects. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(3), 55–66 (2001)
Bettstetter, C., Hartenstein, H., Perez-Costa, X.: Stochastic properties of the random waypoint mobility model. ACM/Kluwer Wirel. Netw. (Special Issue on Modelling and Analysis of Mobile Networks) 10(5), 555–567 (2004)
Bettstetter, C., Wagner, C.: The spatial node distribution of the random waypoint mobility model. In: Proceedings of WMAN, Ulm, pp. 41–58 (2002)
Birand, B., Zafer, M., Zussman, G., Lee, K.-W.: Dynamic graph properties of mobile networks under Lévy walk mobility. In: IEEE 8th International Conference on Mobile Adhoc and Sensor Systems, MASS 2011, Valencia, Spain, 17–22 October 2011, pp. 292–301 (2011)
Boldrini, C., Passarella, A.: HCMM: modelling spatial and temporal properties of human mobility driven by users’ social relationships. Elsevier Comput. Commun. 33, 1056–1074 (2010)
Borrel, V., Legendre, F., de Amorim, M.D.: Simps: using sociology for personal mobility. IEEE/ACM Trans. Netw. 17, 831–842 (2009)
Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462–465 (2006)
Cai, X., Chen, L., Sofia, R.: A dynamic and user-centric network selection in heterogeneous wireless networks. In: IEEE International Performance, Computing, and Communications Conference, 2007, IPCCC (2007)
Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. ACM Comput. Surv. (CSUR) 37(2), 164–194 (2005). ACM, New York, NY, USA
Chaoming, S., et al.: Limits of predictability in human mobility. Science 327, 1018–1021 (2010)
Chatzimisios, P., Vitsas, V., Boucouvalas, A.C.: Throughput and delay analysis of IEEE 802.11 protocol. In: Proceedings of 2002 IEEE 5th International Workshop on Networked Appliances, 2002, Liverpool, pp. 168–174. IEEE (2002)
CRAWDAD - A Community Resource for Archiving Wireless Data at Darthmouth. http://crawdad.org/. Accessed Nov 2012
Gonzalez, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)
Gorawski, M., Marks, P., Gorawski, M.: Collecting data streams from a distributed radio-based measurement system. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008. LNCS, vol. 4947, pp. 702–705. Springer, Heidelberg (2008)
Gorawski, M., Grochla, K.: The real-life mobility model: RLMM. In: Proceedings of FGCT 2013, London, pp. 12–14 (2013)
Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover Publications Inc., New York (1956)
Hossmann, T., Spyropoulos, T., Legendre, F.: A complex network analysis of human mobility. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 10–15 April 2011, pp. 876–881 (2011)
Humphries, N.E., Weimerskirch, H., Queiroza, N., Southall, E.J., Sims, D.W.: Foraging success of biological Lévy flights recorded in situ. In: Proceedings of the National Academy of Sciences of the U.S.A. (2012)
Hyttiä, E., Lassila, P., Virtamo, J.: Spatial node distribution of the random waypoint mobility model with applications. IEEE Trans. Mob. Comput. 5(6), 680–694 (2006)
Iraqi, Y., Baoutaba, R.: Handoff and call dropping probabilities in wireless cellular networks. In: Proceedings of IEEE International Conference on Wireless Networks, Communications and Mobile Computing, vol. 1, pp. 209–213 (2005)
Isaacman, S., Becker, R., Cáceres, R., Martonosi, M., Rowland, J., Varshavsky, A., Willinger, W.: Human mobility modeling at metropolitan scales. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys’12), pp. 239–252. ACM, New York (2012)
Joshi, T., Mukherjee, A., Agrawal, D.P.: Exploiting mobility patterns to reduce reauthentication overheads in infrastructure WLAN networks. In: Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1423–1426 (2006)
Karim, L., Mahmoud, Q.H.: A hybrid mobility model based on social cultural and language diversity. In: 9th IEEE International Conference CollaborateCom (2013)
Kim, T.S., Kwon, J.K., Sung, D.K.: Mobility modelling and traffic analysis in three-dimensional high-rise-building environments. IEEE Trans. Veh. Technol. 49(5), 1633–1640 (2000)
Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: the incredibles. SIGMOBILE Mob. Comput. Commun. Rev. 9(4), 50–61 (2005)
Lee, K., Kim, S.J., Rhee, I., Chong, S.: SLAW: self-similar least-action human walk. IEEE/ACM Trans. Netw. 20(2), 515–529 (2012)
Michaelis, S., Wietfeld, C.: Comparison of user mobility pattern prediction algorithms to increase handover trigger accuracy. In: Proceedings of IEEE Vehicular Technology Conference, vol. 2, pp. 952–956 (2006)
Musolesi, M., Hailes, S., Mascolo, C.: An ad hoc mobility model founded on social network theory. MSWiM 2004, 20–24 (2004)
Musolesi, M., Mascolo, C.: A community based mobility model for ad hoc network research. In: Proceedings of the 2nd International Workshop on Multi-Hop Ad Hoc Networks: From Theory to Reality (REALMAN ’06), pp. 31–38. ACM Press (2006)
Prasad, P.S., Agrawal, P.: Movement prediction in wireless networks using mobility traces. In: Proceedings of the 7th IEEE Conference on Consumer Communications and Networking Conference, pp. 1–5 (2010)
Ramos-Fernandez, G., Morales, J.L., Miramontes, O., Cocho, G., Larralde, H., Ayala-Orozco, B.: Lévy walk patterns in the foraging movements of spider monkeys (ateles geof-froyi). Behav. Ecol. Sociobiol. 273, 1743–1750 (2004)
Rhee, I., Lee, K., Hong, S., Kim, S.J., Chong, S.: Demystifying the Lévy-walk nature of human walks. Technical report, CS Department, NCSU, Raleigh, NC (2008). http://netsrv.csc.ncsu.edu/export/Demystifying_Levy_Walk_Patterns.pdf
Rhee, I., Shin, M., Hong, S., Lee, K., Chong, S.: On the Lévy-walk nature of human mobility: do humans walk like monkeys? IEEE/ACM Trans. Netw. (TON) 19(3), 630–643 (2011)
Rojas, A., Branch, P., Armitage, G.: Validation of the random waypoint mobility model through a real world mobility trace. In: Proceedings of IEEE Region 10 TENCON, pp. 1–6 (2005)
Romano, P.: The range vs. rate dilemma of WLANs (2004). http://www.eetimes.com/document.asp?doc_id=1271995
Roy, R.R.: Handbook of Mobile Ad Hoc Networks for Mobility Models. LXIV, 1st edn, 1104 p. Springer, Boston (2011)
Sgora, A., Vergados, D.: Handoff prioritization and decision schemes in wireless cellular networks: a survey. IEEE Commun. Surv. Tutor. 11(4), 57–77 (2009)
Sims, D.W., et al.: Scaling laws of marine predator search behaviour. Nature 451, 1098–1102 (2008)
Soh, W.S., Kim, H.S.: QoS provisioning in cellular networks based on mobility prediction techniques. IEEE Commun. Mag. 41(1), 86–92 (2003)
Sricharan, M.S., Vaidehi, V.: A pragmatic analysis of user mobility patterns in macrocellular wireless networks. Elsevier Pervasive Mob. Comput. 4(5), 616–632 (2008)
Tong, C., Niu, J.W., Qu, G.Z., Long, X., Gao, X.P.: Complex networks properties analysis for mobile ad hoc networks. IET Commun. 6(4), 370–380 (2012)
Tong, L., Bahl, P., Chlamtac, I.: Mobility modelling, location tracking and trajectory prediction in wireless ATM networks. IEEE J. Sel. Areas Commun. 16(6), 922–936 (1998)
Yoon, J., Liu, M., Noble, B.: Random waypoint model considered harmful. In: Proceedings of INFOCOM 2003, San Francisco, April 2003
Zola, E., Barcelo-Arroyo, F.: Probability of handoff to neighbor cells for random waypoint mobility and non-ideal conditions. In: Proceedings of IEEE 2nd Baltic Congress on Future Internet Communications (BCFIC’12), pp. 162–169 (2012)
Zola, E., Barcelo-Arroyo, R., Martín-Escalona, I.: Forecasting the next handoff for users moving with the random waypoint mobility model. EURASIP J. Wirel. Commun. Netw. 2013, 16 (2013)
Acknowledgement
This work was partially supported by the grant of the Polish National Centre for Research and Development, No. LIDER/10/194/L-3/11.
We thank the team of the User-centric Mobility Management project funded by Fundação para a Ciência e Tecnologia, (UMM, http://copelabs.ulusofona.pt/~umm), reference PTDC/EEA-TEL/105709/2008.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Barcelo-Arroyo, F. et al. (2014). New Trends in Mobility Modelling and Handover Prediction. In: Ganchev, I., Curado, M., Kassler, A. (eds) Wireless Networking for Moving Objects. Lecture Notes in Computer Science(), vol 8611. Springer, Cham. https://doi.org/10.1007/978-3-319-10834-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-10834-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10833-9
Online ISBN: 978-3-319-10834-6
eBook Packages: Computer ScienceComputer Science (R0)