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2 École Normale Supérieure, Paris

Abstract. We consider semi-adaptive security for attribute-based encryption, where the adversary specifies the
challenge attribute vector after it sees the public parameters but before it makes any secret key queries. We present
two constructions of semi-adaptive attribute-based encryption under static assumptions with short ciphertexts.
Previous constructions with short ciphertexts either achieve the weaker notion of selective security, or require
parameterized assumptions.

As an application, we obtain improved delegation schemes for Boolean formula with semi-adaptive soundness,
where correctness of the computation is guaranteed even if the client’s input is chosen adaptively depending on its
public key. Previous delegation schemes for formula achieve one of adaptive soundness, constant communication
complexity, or security under static assumptions; we show how to achieve semi-adaptive soundness and the last two
simultaneously.

⋆ The research leading to these results has received funding from the European Research Council under the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 CryptoCloud).

⋆⋆ Email: s080001@e.ntu.edu.sg. Supported by Science and Technology Commission of Shanghai Municipality under Grants
14YF1404200, 13JC1403500, and the National Natural Science Foundation of China Grant No. 61172085. Part of this work
was done at Nanyang Technological University, supported by the National Research Foundation of Singapore under Research
Grant NRF-CRP2-2007-03.

⋆ ⋆ ⋆ Email: wee@di.ens.fr. CNRS (UMR 8548) and INRIA. Supported in part by the French ANR-12-INSE-0014 SIMPATIC
Project. Part of this work was done at Columbia University, supported by NSF Award CNS-1319021, and at Ruhr-Universität
Bochum as a Research Fellow of the Alexander von Humboldt Foundation.



1 Introduction

Attribute-based encryption (ABE) [33, 19] is an emerging paradigm for public-key encryption which enables
fine-grained control of access to encrypted data. In traditional public-key encryption, access to the encrypted
data is all or nothing: given the secret key, one can decrypt and read the entire plaintext, but without it,
nothing about the plaintext is revealed (other than its length). In ABE, a ciphertext is labeled with an attribute
vector x, and a secret key is associated with an access policy specified as a Boolean formula, and the secret
key decrypts the ciphertext if and only if x satisfies the access policy.1 It is easy to see that ABE is a
generalization of identity-based encryption (IBE) [34, 5, 13]. The security requirement for ABE stipulates
that it resists collusion attacks, namely any group of users collectively learns nothing about the plaintext if
none of them is individually authorized to decrypt the ciphertext.

Delegation. A delegation scheme allows a computationally weak client to delegate expensive computations
to the cloud, with the assurance that a malicious cloud cannot convince the client to accept an incorrect
computation [18, 16, 4, 14]. Recent work of Parno, Raykova and Vaikuntanathan [32] showed that any ABE
with encryption time at most linear in the length of the attribute vector immediately yields a delegation
scheme for Boolean formula. There is an initial pre-processing phase which fixes the formula f the client
wishes to compute and produces some public key. Afterwards, to delegate computation on an input x,
the client only needs to send a single message. Moreover, the ensuing delegation scheme satisfies public
delegatability, namely anyone can delegate computations to the cloud; as well as public verifiability, namely
anyone can check the cloud’s work (given a “verification” key published by the client).

State of the art. Since the introduction of ABE and motivated in part by the connection to delegation,
there is now a large body of work providing constructions with incomparable trade-offs amongst efficiency,
security guarantees and security assumptions [19, 2, 27, 31, 26]; a summary of this work is presented in
Fig 1. A key measure of efficiency is the ciphertext size and the encryption time; ideally, we want this
to depend at most linearly in the length of the attribute vector and independent of the size of the access
structure. For security guarantees, the two primary notions are selective and adaptive security; in the more
restrictive setting of selective security, the adversary must specify the challenge attribute vector prior to
seeing the public parameters. Finally, the security of the schemes rely on the assumed hardness of some
computational problem in bilinear groups; here, we prefer prime-order instantiations over composite-order
ones, and static assumptions over parameterized ones.

1.1 Our Contributions

We introduce the notion of semi-adaptive security for ABE and delegation. In ABE, this means that the
adversary specifies the challenge attribute vector after it sees the public parameters but before it makes any
secret key queries. This is stronger than selective security but weaker than adaptive security. In delegation,
this means that the client’s input may depend on the public key but is independent of the worker’s evaluation
key. In addition, we provide new constructions of efficient semi-adaptively secure ABE and delegation
schemes under static assumptions.

New ABE Schemes. Our first result is a semi-adaptively secure ABE whose efficiency matches the state-of-
the-art selectively secure ABE [2]:

1 This is typically referred to as key-policy ABE in the literature, which is the focus of this paper. A different line of works,
e.g. [12, 20, 37, 27, 26], considers ciphertext-policy ABE, where the ciphertext is labeled with a formula and the secret key is
associated with an attribute vector.
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reference security Enc time CT size MPK size SK size group assumption

GPSW06 [19] selective O(n)∗ O(n)∗ O(n) O(ℓ) prime static
ALP11 [2] selective O(n) O(1) O(n) O(nℓ) prime parameterized in n

ALP11 + LW10 selective O(n) O(1) O(n) O(nℓ) composite static
T14 [35] selective O(n) O(1) O(n) O(nℓ) prime static

LOSTW10 [27] adaptive O(nM)∗ O(nM)∗ O(nM) O(ℓ) composite static
OT10 [31] adaptive O(nM)∗ O(nM)∗ O(nM) O(ℓ) prime static
LW12 [26] adaptive O(n)∗ O(n)∗ O(n) O(ℓ) prime parameterized in ℓ

A14 [1] adaptive O(n) O(1) O(n) O(nℓ) composite parameterized in ℓ

Construction 1 semi-adaptive O(n) O(1) O(n) O(nℓ) composite static
Construction 2 semi-adaptive O(n)∗ O(n)∗ O(n) O(ℓ) prime static

Fig. 1. Summary of existing KP-ABE schemes. Here, n denotes the universe size, M is the maximum number of times an attribute
may be used, and ℓ ≤ nM is the number of rows in the matrix M of the access structure. Encryption time is given in terms of group
operations, and CT, PP, SK sizes are given in terms of group elements. For CT, we omit the additive overhead of n bits in order to
transmit the attribute vector. For the quantities marked with ∗, n may be replaced with number of non-zero entries in the attribute
vector x ∈ {0, 1}n, which could be much smaller than n. Note that ALP11, T14 and A14 achieve large universe, we restrict the
attribute universe to [n] for comparison.

(Informal Theorem) There exists a semi-adaptively secure ABE with constant-size ciphertexts.
Encryption time is linear in the length of the attribute vector and independent of the size of the access
structure. The security of the scheme is based on static assumptions in composite-order groups.

We also achieve an analogous result in prime-order groups based on the SXDH Assumption; however,
the ciphertext size is linear in the length of the attribute vector. Throughout this work, when we refer to
ciphertext size, we measure the number of group elements, and we omit the additive overhead of n bits
needed to transmit the attribute vector.

New Delegation Schemes. Starting from our semi-adaptively secure ABE, we obtain improved delegation
schemes for Boolean formula with semi-adaptive soundness, where correctness of the computation is
guaranteed even if the client’s input is chosen adaptively depending on its public key. We note that achieving
semi-adaptive soundness is important in practice, since we would like to reuse the same public key across
multiple inputs, which could lead to correlation between the input and the public key. Previous delegation
schemes for formula achieve one of adaptive soundness [26, 17], constant communication complexity2

[2], or security under static assumptions [19]; we achieve semi-adaptive soundness and the last two
simultaneously. We compare our schemes with prior works in Fig 2. We stress that in applications such as
delegating computation from mobile devices on cellular networks where bandwidth is a premium, reducing
the client’s communication from O(nλ) bits to n+O(λ) bits represents substantial savings.

1.2 Our Techniques

Following our recent works [38, 9] and inspired in part by [26], we rely on Waters’ dual system encryption
methodology [36, 25] to reduce the problem of building a (public-key) semi-adaptively secure ABE to that of
building a private-key selectively secure ABE. Recall that dual system encryption is typically implemented
by designing a “semi-functional space” where semi-functional components of keys and ciphertexts will
behave like a parallel copy of the normal components of the system, except divorced from the public
parameters. In particular, we will embed the private-key selectively secure ABE into the semi-functional
space.

We proceed to outline the constructions of private-key ABE with short ciphertexts:
2 Here, we refer to the client’s communication overhead beyond sending the n-bit input, as measured in group elements.
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reference security |EKF| client’s communi-
cation in bits

worker’s
complexity

groups assumptions

GPSW06 [19] selective O(ℓ) O(nλ) O(ℓ) prime static
ALP11 [2] selective O(nℓ) n+O(λ) O(nℓ) prime parameterized in n

T14 [35] selective O(nℓ) n+O(λ) O(nℓ) prime static

GGPR13 [17] adaptive O(ℓ) n+O(λ) O(ℓ) prime parameterized in ℓ

LW12 [26] adaptive O(ℓ) O(nλ) O(ℓ) prime parameterized in ℓ

A14 [1] adaptive O(nℓ) n+O(λ) O(nℓ) composite parameterized in ℓ

Construction 1 semi-adaptive O(nℓ) n+O(λ) O(nℓ) composite static
Construction 2 semi-adaptive O(ℓ) O(nλ) O(ℓ) prime static

Fig. 2. Summary of existing publicly verifiable computation schemes. GGPR13 supports NC. The remaining schemes only support
NC1 and are obtained using the transformation of [32]. Here, |EKF| is the worker’s evaluation key, n is the bit length of the input
and ℓ is the size of the formula. In all the schemes, the public key is O(n) group elements, delegation and verification complexity
of client is O(n) group operations, computation complexity of worker is also given in terms of group operations.

– For our composite-order scheme with constant-size ciphertext, we use a private-key variant of the
selectively secure ABE scheme of Attrapadung, Libert and Panafieu (ALP) in [2]. Our main insight is
that in the private-key setting with a single challenge ciphertext, we can replace the use of parameterized
assumptions in the ALP scheme with the basic DDH assumption. Roughly speaking, fix an attribute
i that does not appear in the challenge attribute. We can then rely on the DDH assumption to mask
all the LSSS shares of the master secret key corresponding to attribute i (c.f. Section 3 overview and
Lemma 2).3 The formal security proof is more involved since we need to instantiate this argument within
the dual system framework.

– For our prime-order scheme with O(n)-size ciphertext, the private-key selectively secure ABE we use
is essentially that of Goyal et al. [19], which is in fact a public-key scheme and yields ciphertexts of
length O(n). To combine this scheme with the dual system framework, we rely on dual pairing vector
spaces [29, 30, 15, 23, 11]. Here, we will also use the SXDH assumption to boost statistical entropy in
the semi-functional key space into arbitrarily large amounts of computational entropy in the same space
(c.f. Lemma 6) as we will need to mask an arbitrarily large number of shares corresponding to a single
attribute.

For both schemes, we are able to exploit random self-reducibility to obtain security loss that do not depend
on the number of secret key queries or the size of the boolean formula (but may depend on the input size n).
In contrast, all known adaptively secure ABE schemes incur a loss that is at least linear in both the number of
secret key queries and the size of the boolean formula (sometimes implicitly, by either making a “one-use”
restriction or using a parameterized assumption).

Additional related work. In an independent work, Takashima [35] proposed a selectively secure KP-ABE
scheme with constant-size ciphertexts under the DLIN assumption, which results in a delegation scheme
with constant communication complexity and security under static assumptions but only achieving selective
soundness. Upon learning of our work, Takashima showed that his scheme also achieves semi-adaptive
security, thereby resolving a natural open problem from this work. Gennaro, Gentry, Parno and Raykova [17]
constructed a delegation scheme achieving adaptive soundness and supporting NC but its security relies on
parameterized assumptions.

3 In an earlier submission, an anonymous reviewer asked if it is possible to obtain the composite-order scheme by combining
the Lewko-Waters ABE [26] with the ALP scheme. We clarify here that this approach (should it pan out) would inherit the
parameterized assumption from [2]. In particular, none of the prior works either implicitly or explicitly build a private-key ABE
with constant-size ciphertexts from static assumptions.
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Organization. We present our composite-order and prime-order constructions in Section 3 and Section A
respectively, and the delegation schemes and associated definitions in Section B.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at random from a finite set S and
by x, y, z ←R S that all x, y, z are picked independently and uniformly at random from S. By PPT, we
denote a probabilistic polynomial-time algorithm. Throughout, we use 1λ as the security parameter. We use
· to denote multiplication (or group operation) as well as component-wise multiplication. We use lower case
boldface to denote (column) vectors over scalars and upper case boldface to denote vectors of group elements
as well as matrices. Given two vectors x = (x1, x2, . . .),y = (y1, y2, . . .) over scalars, we use ⟨x,y⟩ to
denote the standard dot product x⊤y. Given a group element g, we write gx to denote (gx1 , gx2 , . . .); we
define gA where A is a matrix in an analogous way.

2.1 Access Structures

We define (monotone) access structures using the language of (monotone) span programs [21].

Definition 1 (access structure [3, 21]). A (monotone) access structure A for attribute universe [n] is a pair
(M, ρ) where M is a ℓ × ℓ′ matrix over ZN and ρ : [ℓ] → [n]. Given x = (x1, . . . , xn) ∈ {0, 1}n, we say
that

x satisfies A iff 1 ∈ span⟨Mx⟩,

Here, 1 := (1, 0, . . . , 0) ∈ Zℓ′
N is a row vector; Mx denotes the collection of vectors {Mj : xρ(j) = 1}

where Mj denotes the j’th row of M; and span refers to linear span of collection of (row) vectors over ZN .

That is, x satisfies A iff there exists constants ω1, . . . , ωℓ ∈ ZN such that∑
j:xρ(j)=1

ωjMj = 1.

Observe that the constants {ωj} can be computed in time polynomial in the size of the matrix M via
Gaussian elimination.

2.2 Key-Policy Attribute-Based Encryption

A KP-ABE scheme consists of four algorithms (Setup,Enc,KeyGen,Dec):

Setup(1λ, [n]) → (MPK, MSK). The setup algorithm takes in a security parameter 1λ, and an attribute
universe [n]. It outputs public parameters MPK and a master secret key MSK.

Enc(MPK,x,m)→ CTx. The encryption algorithm takes in the public parameters MPK, an attribute vector
x, and a message m. It outputs a ciphertext CTx.

KeyGen(MPK, MSK,A) → SKA. The key generation algorithm takes in the public parameters MPK, the
master secret key MSK, and an access structure A := (M, ρ). It outputs a secret key SKA.

Dec(MPK, SKA, CTx) → m. The decryption algorithm takes in the public parameters MPK, a secret key
SKA for an access structure A, and a ciphertext CTx encrypted under an attribute vector x. It outputs a
message m if x satisfies A.
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Correctness. For all (MPK, MSK) ← Setup(1λ, [n]), all access structures A, all decryption keys SKA, all
messages m, all x satisfying A, we have Pr[Dec(MPK, SKA,Enc(MPK,x,m)) = m] = 1.

2.3 Semi-Adaptive Security Model

We now formalize the notation of semi-adaptive security for KP-ABE. Briefly, the adversary specifies the
challenge attribute vector after it sees the public parameters and before it makes any secret key queries. The
security game is defined by the following experiment, played by a challenger and an adversary A.

Setup. The challenger runs the setup algorithm to generate (MPK, MSK). It gives MPK to A.

Challenge Attribute. A gives the challenger a challenge x∗.

Phase 1. A adaptively requests keys for access structures A with the constraint x∗ does not satisfy A.
The challenger responds with the corresponding secret key SKA, which it generates by running the key
generation algorithm.

Challenge Ciphertext. A submits two equal-length messages m0 and m1. The challenger picks β ←R

{0, 1}, and encrypts mβ under x∗ by running the encryption algorithm. It sends the ciphertext to A.

Phase 2. A continues to issue key queries as in Phase 1.

Guess. A must output a guess β′ for β.

The advantage AdvKP-ABE
A (λ) of an adversary A is defined to be Pr[β′ = β]− 1/2.

Definition 2. A KP-ABE scheme is semi-adaptively secure if all PPT adversaries achieve at most a
negligible advantage in the above security game.

2.4 Composite Order Bilinear Groups

Composite order bilinear groups were first introduced in [7] and used in [22, 25, 27]. A generator G takes
as input a security parameter 1λ and outputs a description G := (N,GN , GT , e), where N is product of
distinct primes of Θ(λ) bits, GN and GT are cyclic groups of order N , and e : GN ×GN → GT is a map
with the following properties:

1. (Bilinearity) ∀g, h ∈ GN , a, b ∈ ZN , e(ga, hb) = e(g, h)ab.

2. (Non-degeneracy) ∃g ∈ GN such that e(g, g) has order N in GT .

We require that the group operations in GN and GT as well the bilinear map e are computable in
deterministic polynomial time with respect to λ. Furthermore, the group descriptions of GN and GT include
generators of the respective cyclic groups. We use Gn to denote the subgroup of GN of order n, where n

divides N .

Computational Assumptions. We now state the three static assumptions that are required in our security
proof. The first two assumptions are introduced in [25] and also used in [27]. The third assumption which
basically asserts that the DDH problem is hard in the Gp2-subgroup. This assumption is essentially implied
by the composite 3-party Diffie-Hellman (3PDH) assumption in [6]. We provide more discussion and
justification of this assumption in Section C. All three assumptions hold in the generic group model under
the assumption finding a non-trivial factor of N is hard.
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Assumption 1 Given a group generator G, we define the following distribution:

G := (N = p1p2p3, GN , GT , e)←R G,
g1, U1 ←R Gp1 , U2 ←R Gp2 , g3 ←R Gp3 ,

T0 ←R Gp1 , T1 ←R Gp1p2 ,

D := (G; g1, U1U2, g3).

We assume that for any PPT algorithm A,

AdvAS1
A (λ) :=

∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]
∣∣

is negligible in the security parameter λ.

Assumption 2 Given a group generator G, we define the following distribution:

G := (N = p1p2p3, GN , GT , e)←R G,
α, s←R ZN ,

g1 ←R Gp1 , g2, X2, Y2 ←R Gp2 , g3 ←R Gp3 ,

T0 := e(g1, g1)
αs, T1 ←R GT ,

D := (G; g1, g
α
1X2, g

s
1Y2, g2, g3).

We assume that for any PPT algorithm A,

AdvAS2
A (λ) :=

∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]
∣∣

is negligible in the security parameter λ.

Assumption 3 Given a group generator G, we define the following distribution:

G := (N = p1p2p3, GN , GT , e)←R G,
x, y, z ←R ZN ,

g1, U1 ←R Gp1 , g2, U2 ←R Gp2 , g3, X3, Y3, U3,W3 ←R Gp3 ,

T0 := gxy2 W3, T1 := gxy+z
2 W3,

D := (G; g1, U1U2, g
x
2X3, g

y
2Y3, g2U3, g3).

We assume that for any PPT algorithm A,

AdvAS3
A (λ) :=

∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]
∣∣

is negligible in the security parameter λ.

3 Semi-Adaptive ABE with Constant-Size Ciphertext

Overview. The starting point of our construction is the following variant of the ALP KP-ABE in [2]:

MPK := (g, gw, e(g, g)α)

CTx := (gs, gs⟨w,x⟩, e(g, g)αs ·m)

SKA := (gαjeρ(j)+rjw, grj : j ∈ [ℓ])

where α1, . . . , αℓ are LSSS shares of α for the access structure A. Our construction proceeds by embedding
this scheme into composite-order groups. As noted in the introduction, our main insight is to analyze this
scheme in the private-key, selective setting. Fix a selective challenge x∗ ∈ {0, 1}n and an index k ∈ [n]
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and an access structure A not satisfied by x∗. We proceed via a case analysis to argue that SKA hides α

computationally:

– if x∗k = 1, then the shares {αj : ρ(j) = k} reveal no information about α via the secret sharing property.

– if x∗k = 0, then the ciphertext reveals no information about wk (and since we are in the private-key
setting, there is no MPK). Then, by the DDH assumption, {gαj+rjwk , grj : ρ(j) = k} computationally
hides αj .

The formal security proof is more involved since we need to instantiate this argument within the dual system
framework.

3.1 Construction

– Setup(1λ, [n]): On input an attribute universe [n], generate G := (N = p1p2p3, GN , GT , e)←R G, pick
α←R ZN ,w←R Zn

N and output

MPK := ( G, e(g1, g1)
α, g1, g

w
1 ) and MSK := ( α,w, g2, g3 ) .

– Enc(MPK,x,m) : On input an attribute vector x := (x1, . . . , xn) ∈ {0, 1}n and m ∈ GT , output

CTx :=
(
C0 := gs1, C1 := g

s⟨w,x⟩
1 , C2 := e(g1, g1)

αs ·m
)
∈ GN ×GN ×GT ,

where s←R ZN .

– KeyGen(MPK, MSK,A := (M, ρ)): On input an access structure A := (M, ρ), where M ∈ Zℓ×ℓ′

N and
ρ : [ℓ]→ [n], pick a random vector u←R Zℓ′

N such that 1u = α and set αj := Mju, j ∈ [ℓ].4 Output

SKA :=

(
Dj := g

αjeρ(j)+rjw

1 · g
r′jw

2 ·Xj , D0,j := g
rj
1 · g

r′j
2 · Zj : j ∈ [ℓ]

)
∈ (Gn

N ×GN )ℓ ,

where r1, r
′
1, . . . , rℓ, r

′
ℓ ←R ZN ; Xj ←R Gn

p3 ;Zj ←R Gp3 , and (e1, . . . , en) is the standard basis for
Zn
N .

– Dec(MPK, SKA, CTx): If x satisfies A, compute ω1, . . . , ωℓ ∈ ZN such that∑
j:xρ(j)=1

ωjMj = 1.

Then, compute5

e(g1, g1)
αs ←

∏
j:xρ(j)=1

(
e(Cx

0 ,Dj) · e(C1, D0,j)
−1
)ωj

,

and recover the message as m← C2/e(g1, g1)
αs ∈ GT .

Correctness. Observe that

e(Cx
0 ,Dj) · e(C1, D0,j)

−1 = e((gs1)
x, g

αjeρ(j)+rjw

1 · g
r′jw

2 ·Xj) · e(gs⟨w,x⟩
1 , g

rj
1 · g

r′j
2 · Zj)

−1

= e(g1, g1)
αjs⟨eρ(j),x⟩ · e(g1, g1)rjs⟨w,x⟩ · e(g1, g1)−rjs⟨w,x⟩

= e(g1, g1)
αjs.

4 The αj’s do in fact correspond to LSSS secret shares of α, distributed across n parties, where the i’th party receive |ρ−1(i)|
shares, given by {αj : ρ(j) = i}.

5 It is easy to see that e(Cx
0 ,Dj) can in fact be computed using only a single pairing.
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In addition, we have ∑
j:xρ(j)=1

ωjαj =
∑

j:xρ(j)=1

ωjMju = 1u = α.

This means ∏
j:xρ(j)=1

(
e(Cx

0 ,Dj) · e(C1, D0,j)
−1
)ωj

=
∏

j:xρ(j)=1

e(g1, g1)
ωjαjs = e(g1, g1)

αs.

Correctness follows readily.

3.2 Proof of Security

We prove the following theorem:

Theorem 1. Under Assumptions 1, 2 and 3 (described in Section 2.4), our KP-ABE scheme defined in
Section 3.1 is semi-adaptively secure (in the sense of Definition 2). More precisely, for any adversaryA that
makes at most q key queries against the KP-ABE scheme, there exist probabilistic algorithms B1,B2,B3
such that

AdvKP-ABE
A (λ) ≤ AdvAS1

B1
(λ) + n · AdvAS3

B2
(λ) + AdvAS2

B3
(λ) + 1/p1 + (n+ 1)/p2,

and

max{Time(B1),Time(B2),Time(B3)} ≈ Time(A) + q · poly(λ, n),

where n is the size of universe attribute set and poly(λ, n) is independent of Time(A).

Overview. The proof follows via a series of games. To describe the games, we must first define semi-
functional keys and ciphertexts. Fix random generators g1, g2, g3, and let x∗ denote the semi-adaptive
challenge. We stress that unlike standard dual system encryption, we allow the semi-functional secret keys
to depend on the semi-adaptive challenge x∗ (this is okay because in the semi-adaptive security game, x∗

is fixed before the adversary sees any secret keys). In the final transition (c.f. Lemma 3), we need to be
able to simulate the secret keys given gα1X2 (as provided in Assumption 2) instead of gα1 , so we define the
semi-functional secret keys to have additional random Gp2-components for the indices j corresponding to
x∗ρ(j) = 0 as captured by the term α′

jeρ(j) below.

Semi-functional ciphertext.

CTx∗ :=

(
gs1 · gs

′
2 , g

s⟨w,x∗⟩
1 · gs

′⟨w,x∗⟩
2 , e(g1, g1)

αs ·m
)
,

where s′ ←R ZN .

Semi-functional secret key.

SKA :=

 g
αjeρ(j)+rjw

1 · g
r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : x∗ρ(j) = 1

g
αjeρ(j)+rjw

1 · g
α′
jeρ(j) +r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : x∗ρ(j) = 0

 ,

where fresh α′
1, . . . , α

′
ℓ ←R ZN are chosen for each secret key (specifically, we pick fresh α′

j ←R ZN for
all j such that x∗ρ(j) = 0).

Remark 1 (decryption capabilities). Fix x∗,A such that x∗ satisfies A. Then,
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– both semi-functional and normal secret key SKA can decrypt a normal ciphertext CTx∗ ;

– a normal secret key SKA can decrypt a semi-functional ciphertext CTx∗ ;

– a semi-functional secret key SKA can decrypt a semi-functional ciphertext CTx∗ ; this is because the j’th
subkey (Dj , D0,j) corresponding to x∗ρ(j) = 0 is not used for decryption although it has an additional

semi-functional component g
α′
j

2 . This is different from a standard dual system encryption argument, but
is okay in our setting because x∗ is fixed semi-adaptively before the adversary makes secret key queries.

Game sequence. We consider the following sequence of games:

– Game0: is the real security game (c.f. Section 2.3).

– Game1: is the same as Game0 except that the challenge ciphertext is semi-functional.

– Game2,k, k = 1, 2, . . . , n: we incrementally transform each normal secret key to a semi-functional one,
i.e. Game2,k is the same as Game1 except that, for each secret key

SKA :=
(

Dj , D0,j : j ∈ [ℓ]
)
,

the j’th subkey (Dj , D0,j) is semi-functional if ρ(j) ≤ k, and normal if ρ(j) > k. More precisely,

SKA :=


g
αjeρ(j)+rjw

1 · g
r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : x∗ρ(j) = 1

g
αjeρ(j)+rjw

1 · g
r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : (x∗ρ(j) = 0) ∧ (ρ(j) > k)

g
αjeρ(j)+rjw

1 · g
α′
jeρ(j)+r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : (x∗ρ(j) = 0) ∧ (ρ(j) ≤ k)

 ,

where fresh α′
1, . . . , α

′
ℓ ←R ZN are chosen for each secret key. In other words, from Game2,k−1 to

Game2,k, we modify the first component Dj of the j’th subkey for all j such that ρ(j) = k (that is,
corresponds to the variable xk) as follows:

• if x∗k = 1, we leave it unchanged;

• if x∗k = 0, we change the semi-functional component from g
r′jw

2 to g
α′
jek+r′jw

2 .

Note that in Game2,n, all keys are semi-functional.

– Game3: is the same as Game2,n except that the challenge ciphertext is a semi-functional encryption of a
random message in GT .

Fix an adversary A. We write Advxx(λ) to denote the advantage of A in Gamexx. It is easy to see that
Adv3(λ) = 0, because the view of the adversary is Game3 is independent of the challenge bit β. We complete
the proof by establishing the following sequence of lemmas.

Lemma 1 (Normal to semi-functional ciphertext). There exists an adversary B1 such that:

|Adv0(λ)− Adv1(λ)| ≤ AdvAS1
B1

(λ) + 1/p1 + 1/p2

and Time(B1) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. We construct an adversary B1 for Assumption 1 using A. Recall that in Assumption 1, the adversary
is given D := (G; g1, U1U2, g3), along with T , where T is distributed as

gs1 or gs1g
s′
2 .

Here, B1 simulates Game0 if T := gs1 and Game1 if T := gs1g
s′
2 . The quantity s, s′ in the assumption will

correspond the random exponents s, s′ used in the ciphertext.
Specifically, B1 proceeds as follows:

9



Setup. B1 samples α←R Zn, w←R Zn
N and outputs

MPK := ( e(g1, g
α
1 ), g1, g

w
1 ).

We note that

( α,w, g1, U1U2, g3;T )

is known to B1. The adversary A outputs a challenge x∗ := (x∗1, . . . , x
∗
n).

Challenge Ciphertext. Upon receiving two equal-length messages m0 and m1 from A, B1 picks β ←R

{0, 1} and outputs the semi-functional challenge ciphertext as:

CTx∗ :=
(
T, T ⟨w,x∗⟩, e(T, gα1 ) ·mβ

)
.

Now, suppose T = gs1 · gs
′

2 , then,

T ⟨w,x∗⟩ := (gs1 · gs
′

2 )
⟨w,x∗⟩ = g

s⟨w,x∗⟩
1 g

s′⟨w,x∗⟩
2 ,

e(T, gα1 ) := e(gs1 · gs
′

2 , g
α
1 ) = e(g1, g1)

αs.

Now, if s′ = 0 (i.e., T = gs1), this would indeed be a normal encryption. On the other hand, if s′ ←R ZN

instead, this would indeed be a semi-functional encryption.

Key Queries. On input A := (M, ρ), B1 needs to generate a normal key SKA, which has the distribution(
Dj := g

αjeρ(j)
1 · (grj1 · g

r′j
2 )w ·Xj , D0,j := (g

rj
1 · g

r′j
2 ) · Zj : j ∈ [ℓ]

)
.

B1 picks r̃j ←R ZN for j ∈ [ℓ] and replaces grj1 · g
r′j
2 with (U1U2)

r̃j ; then, it outputs

SKA :=
(

g
αjeρ(j)
1 · (U1U2)

r̃jw ·Xj , (U1U2)
r̃j · Zj : j ∈ [ℓ]

)
.

Observe that (U1U2)
r̃j is properly distributed as long as U1U2 is a generator of Gp1p2 (by the Chinese

Remainder Theorem), which occurs with probability 1− 1/p1 − 1/p2.

We may therefore conclude that: |Adv0(λ)− Adv1(λ)| ≤ AdvAS1
B1

(λ) + 1/p1 + 1/p2. ⊓⊔

Lemma 2 (Normal to semi-functional keys). For k = 1, . . . , n, there exists an adversary B2 such that:

|Adv2,k−1(λ)− Adv2,k(λ)| ≤ AdvAS3
B2

(λ) + 1/p2

and Time(B2) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of Time(A). (We note that
Game2,0 is identical to Game1.)

Overview of proof. Fix k. We want to modify j’th subkey (Dj , D0,j) for all j such that ρ(j) = k (that is,
corresponds to the variable xk) as follows:

– if x∗k = 1, we leave it unchanged (in this case, Game2,k−1 and Game2,k are identical);

– if x∗k = 0, we change the semi-functional component in Dj from g
r′jw

2 to g
α′
jek+r′jw

2 using Assumption 3.

In the rest of the overview, we focus on the case x∗k = 0. Roughly speaking, we rely on the fact that wk

(mod p2) is statistically hidden given MPK to obtain computational entropy as captured by {g
α′
j

2 : ρ(j) =

k}. For simplicity, we first consider a single subkey (Dj , D0,j) for which ρ(j) = k. Recall that (Dj , D0,j)

10



in Game2,k−1 and Game2,k are of the form:

(g
αjek+rjw
1 · g

r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj) and (g

αjek+rjw
1 · g

α′
jek+r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj)

Roughly speaking, it suffices to show that:

(gw1 , g
r′jw

2 ·Xj , g
r′j
2 · Zj) and (gw1 , g

α′
jek+r′jw

2 ·Xj , g
r′j
2 · Zj)

are computationally indistinguishable, where gw1 is provided in MPK. We may further simplify this to show
that:

(gwk
1 , g

r′jwk

2 ·Xj , g
r′j
2 · Zj) and (gwk

1 , g
α′
j+r′jwk

2 ·Xj , g
r′j
2 · Zj)

are computationally indistinguishable, where Xj , Zj ←R Gp3 . This follows essentially from Assumption 3,
which tells us that

( g
r′jwk

2 ·Xj , g
r′j
2 · Zj , g

wk
2 · Y3) and ( g

α′
j+r′jwk

2 ·Xj , g
r′j
2 · Zj , g

wk
2 · Y3)

are computationally indistinguishable, where Xj , Zj , Y3 ← Gp3 . Here, we rely crucially on the fact that wk

(mod p2) is completely random given gwk
1 . To handle multiple subkeys {(Dj , D0,j) : j ∈ ρ−1(k)}, we can

proceed via a hybrid argument, but that would yield a security loss of |ρ−1(k)|. To avoid this loss, we rely
on the rerandomization trick from [28]. Finally, note that we cannot generate a semi-functional ciphertext
for x∗ such that x∗k = 1 since we are only given gwk

2 Y3 and not gwk
2 . (For the proof, it suffices to simulate a

semi-functional ciphertext for which x∗k = 0.)

Proof. We construct an adversary B2 (which gets as additional input k ∈ [n]) for Assumption 3 using A.
We note that the case x∗k = 1 is straight-forward since Game2,k is identical to Game2,k−1, which means

|Adv2,k−1(λ)− Adv2,k(λ)| = 0 ≤ AdvAS3
B2

(λ).

This leaves us with k such that x∗k = 0. Recall that in Assumption 3, the adversary is given D :=

(G; g1, U1U2, g
x
2X3, g

y
2Y3, g2U3, g3), along with T , where T is distributed as

gxy2 W3 or gxy+z
2 W3.

Here, we assume that z ←R Z∗
p2 , which yields a 1/p2 negligible difference from Assumption 3 in the

advantage; B2 simulates Game2,k−1 if T = gxy2 W3 and Game2,k if T = gxy+z
2 W3. Moreover, we use a

“trick” from [28] to get a tight security reduction and avoid losing a factor of ℓ.

Specifically, B2 proceeds as follows:

Setup. B2 samples α ←R ZN , w̃ ←R Zn
N and implicitly sets the parameter w := w̃ mod p1p3 (whereas

w mod p2 is undetermined at this point). B2 outputs

MPK := ( e(g1, g
α
1 ), g1, g

w̃
1 ).

Observe that this is indeed the correct distribution since gw1 = gw̃1 . Moreover, we note that

( α, w̃, g3;U1U2, g
x
2X3, g

y
2Y3, g2U3;T )

is known to B2. Upon receiving a challenge x∗ := (x∗1, . . . , x
∗
n) for which x∗k = 0, B2 implicitly sets the

parameter w = w̃ + y · ek mod p2.
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Challenge Ciphertext. Upon receiving two equal-length messages m0 and m1 from A, B2 picks β ←R

{0, 1} and outputs the semi-functional challenge ciphertext as:(
U1U2, (U1U2)

⟨w̃,x∗⟩, e(gα1 , U1U2) ·mβ

)
.

Observe that this is indeed the correct distribution since ⟨w̃,x∗⟩ = ⟨w,x∗⟩ mod p1p2.

Key Queries. On input A := (M, ρ), B2 needs to generate a secret key SKA of the form:

g
αjeρ(j)+rjw

1 · g
r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : x∗ρ(j) = 1

g
αjeρ(j)+rjw

1 · g
r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : (x∗ρ(j) = 0) ∧ (ρ(j) > k)

g
αjeρ(j)+rjw

1 · g
α′
jeρ(j)+r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : (x∗ρ(j) = 0) ∧ (ρ(j) < k)

g
αjeρ(j)+rjw

1 · g
r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : (x∗ρ(j) = 0) ∧ (ρ(j) = k) ∧ (T = gxy2 W3)

g
αjeρ(j)+rjw

1 · g
α′
jeρ(j)+r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : (x∗ρ(j) = 0) ∧ (ρ(j) = k) ∧ (T = gxy+z

2 W3)


where α′

1, . . . , α
′
ℓ ←R ZN . Note that we know α and can therefore compute αj := Mju as in the normal

KeyGen. We proceed via a case analysis for j. The first three cases are straight-forward, observe that

gw̃1 = gw1 and gw2 = gw̃2 · (g
y
2)

ek .

We simply use g2U3 and gy2Y3 in place of g2 and gy2 respectively and pick rj , r
′
j , α

′
j ←R ZN .

This leaves us with j such that (x∗ρ(j) = 0) ∧ (ρ(j) = k). Here, B2 picks δj , δ′j ←R ZN and implicitly
sets

r′j := xδj + δ′j .

We can then rewrite the j’th normal subkey as:(
g
αjeρ(j)+rjw̃

1 · (gxδj2 · g
δ′j
2 )w̃ · (gxyδj2 · g

yδ′j
2 )eρ(j) ·Xj , g

rj
1 · (g

xδj
2 · g

δ′j
2 ) · Zj

)
.

Here, we want to replace g2, g
x
2 , g

y
2 , g

xy
2 with g2U3, g

x
2X3, g

y
2Y3, T respectively. First, B2 computes

Rj := (gx2X3)
δj · (g2U3)

δ′j = g
r′j
2 · (X

δj
3 U

δ′j
3 ),

and outputs as the j’th subkey(
g
αjeρ(j)+rjw̃

1 · Rw̃
j ·
(
T δj · (gy2Y3)

δ′j
)eρ(j) ·Xj , g

rj
1 ·Rj · Zj

)
.

Now, suppose T = gxy+z
2 W3. Then,

Rw̃
j ·
(
T δj · (gy2Y3)

δ′j
)eρ(j) = g

zδjeρ(j)+r′jw

2 ·X′
j

for some X′
j ∈ Gn

p3 . Now, if z = 0 (i.e., T = gxy2 W3), this would indeed be a normal subkey. On the
other hand, if z ←R Z∗

p2 , this would be a semi-functional subkey, with α′
j := zδj , and where (r′j , δj) are

pairwise-independent modulo p2.
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In summary, B2 outputs as SKA:
g
αjeρ(j)+rjw̃

1 · Sj ·Xj , g
rj
1 · (g2U3)

r′j · Zj : x∗ρ(j) = 1

g
αjeρ(j)+rjw̃

1 · Sj ·Xj , g
rj
1 · (g2U3)

r′j · Zj : (x∗ρ(j) = 0) ∧ (ρ(j) > k)

g
αjeρ(j)+rjw̃

1 · (g2U3)
α′
jeρ(j) · Sj ·Xj , g

rj
1 · (g2U3)

r′j · Zj : (x∗ρ(j) = 0) ∧ (ρ(j) < k)

g
αjeρ(j)+rjw̃

1 · Rw̃
j ·
(
T δj · (gy2Y3)

δ′j
)eρ(j) ·Xj , g

rj
1 ·Rj · Zj : (x∗ρ(j) = 0) ∧ (ρ(j) = k)


where Sj := (gy2Y3)

r′jek · (g2U3)
r′jw̃ ∈ Gn

p2p3 , Rj := (gx2X3)
δj · (g2U3)

δ′j ∈ Gp2p3 .

We may therefore conclude that: |Adv2,k−1(λ)− Adv2,k(λ)| ≤ AdvAS3
B2

(λ) + 1/p2. ⊓⊔

Lemma 3 (Final transition). There exists an adversary B3 such that:

|Adv2,n(λ)− Adv3(λ)| ≤ AdvAS2
B3

(λ)

and Time(B3) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of Time(A).

Overview of proof. Following the final transitions in [25, 27], we use Assumption 2, in which we are given
(g1, g

α
1X2, g

s
1Y2, g2, g3, T ) where T is either e(g1, g1)αs or drawn uniformly from GT to blind the challenge

message mβ . The main challenge in our setting lies in simulating a semi-functional key SKA given gα1X2

and not α itself. Recall that a semi-functional key SKA has the same distribution g
αjeρ(j)
1 · grjw1 · g

r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : x∗ρ(j) = 1

g
αjeρ(j)
1 · g

α′
jeρ(j)

2 · grjw1 · g
r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : x∗ρ(j) = 0


in both Game2,n and Game3. Specifically, we need to simulate (given g1, g2, g

α
1X2) g

αj

1 : x∗ρ(j) = 1

g
αj

1 · g
α′
j

2 : x∗ρ(j) = 0


where α1, . . . , αℓ are LSSS shares of α according to A = (M, ρ) and α′

1, . . . , α
′
ℓ are independently random

values. Roughly speaking, we proceed as follows:

– simulate the terms (g
αj

1 : x∗ρ(j) = 1) by raising g1 to the power of random LSSS shares of 0 (as
determined by Mũ0 below);

– simulate the terms (g
αj

1 · g
α′
j

2 : x∗ρ(j) = 0) by doing a LSSS share of gα1X2 “in the exponent” (as
determined by αMũ1 below), multiplying by the shares of 0 from the previous step, then re-randomizing
the Gp2-components.

We exploit the fact that x∗ does not satisfy A to argue that we can choose ũ1 so that Mx∗ũ1 = 0.

Proof. We construct an adversary B3 for Assumption 2 using A. Recall that in Assumption 2, the adversary
is given D := (G; g1, g

α
1X2, g

s
1Y2, g2, g3), along with T , where T equals e(g1, g1)αs or is drawn uniformly

from GT . Here, B3 simulates Game2,n if T := e(g1, g1)
αs and Game3 if T ←R GT . The quantity α in the

assumption will correspond exactly to α in MSK, and the quantity s in the assumption will correspond the
random exponents s used in the (semi-functional) ciphertext.

Specifically, B3 proceeds as follows:

Setup. B3 samples w←R Zn
N and output the public parameters

MPK := ( e(g1, g
α
1X2), g1, g

w
1 ).
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We note that

( w, g2, g3; g
α
1X2, g

s
1Y2;T )

is known to B3. The adversary A outputs a challenge x∗ := (x∗1, . . . , x
∗
n).

Challenge Ciphertext. Upon receiving two equal-length messages m0 and m1 from A, B3 picks β ←R

{0, 1} and outputs the semi-functional challenge ciphertext as:

CTx∗ :=
(
gs1Y2, (g

s
1Y2)

⟨w,x∗⟩, T ·mβ

)
.

Now, if T is distributed as distributed as e(g1, g1)αs, this would indeed be a properly distributed semi-
functional encryption of mβ . On the other hand, if T ←R GT , instead, then the challenge ciphertext is a
properly distributed semi-functional encryption of a random message in GT .

Key Queries. On input A := (M, ρ), B3 needs to generate a semi-functional key SKA, which has the
distribution

SKA :=

 g
αjeρ(j)
1 · grjw1 · g

r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : x∗ρ(j) = 1

g
αjeρ(j)
1 · g

α′
jeρ(j)

2 · grjw1 · g
r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : x∗ρ(j) = 0

 ,

where α′
1, . . . , α

′
ℓ ←R ZN . The main challenge lies in simulating the terms gαj

1 since B3 is only given
gα1X2 and not α itself. By definition of the KP-ABE security game, x∗ does not satisfy A, so 1 /∈
span⟨Mx∗⟩. (Refer to Definition 1 for the notation.) Therefore, we can efficiently compute ũ1 ∈ Zℓ′

N

such that

Mx∗ũ1 = 0 and 1ũ1 = 1.

B3 samples ũ0 ←R Zℓ′
N such that 1ũ0 = 0, and implicitly sets

u := α · ũ1 + ũ0.

Observe that u has indeed the correct distribution. Recall that we set αj := Mju, which yields

αj =

{
Mjũ0 if x∗ρ(j) = 1

α ·Mjũ1 +Mjũ0 if x∗ρ(j) = 0

where both ũ1 and ũ0 are known to B3. The case j such that x∗ρ(j) = 1 is straight-forward; B3 simply

picks rj , r′j ←R ZN . For the case j such that x∗ρ(j) = 0, we can then rewrite g
αj

1 · g
α′
j

2 as a function of
ũ0, ũ1, and gα1X2:

g
αj

1 · g
α′
j

2 = g
α·Mj ũ1+Mj ũ0

1 · g
α′
j

2 = (gα1X2)
Mj ũ1 · gMj ũ0

1 · g
α̃′
j

2 ,

where B3 picks α̃′
j ←R ZN and implicitly sets g

α′
j

2 := X
Mj ũ1

2 · g
α̃′
j

2 . B3 then outputs

SKA :=

 g
Mj ũ0eρ(j)
1 · grjw1 · g

r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : x∗ρ(j) = 1(

(gα1X2)
Mj ũ1 · gMj ũ0

1 · g
α̃′
j

2

)eρ(j) · grjw1 · g
r′jw

2 ·Xj , g
rj
1 · g

r′j
2 · Zj : x∗ρ(j) = 0

 .

We may therefore conclude that: |Adv2,n(λ)− Adv3(λ)| ≤ AdvAS2
B3

(λ). ⊓⊔
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A Semi-Adaptive ABE in Prime-Order Groups

This is based on embedding the ABE scheme of Goyal et al. [19] (see also [27]).

A.1 Dual Pairing Vector Spaces

Our second construction is based on dual pairing vector spaces proposed by Okamoto and Takashima [29,
30]. In this paper, we concentrate on the asymmetric version [31]. We only briefly describe how to generate
random dual orthonormal bases. See [29, 30, 31] for a full definition of dual pairing vector spaces.

We first introduce asymmetric bilinear pairing groups. A generator G which takes as input a security
parameter 1λ and outputs a description G := (q,G1, G2, GT , e), where q is a prime of Θ(λ) bits, G1, G2,
and GT are cyclic groups of order q, and e : G1 ×G2 → GT is a map with the following properties:

1. (Bilinearity) ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zq, e(h
a
1, h

b
2) = e(h1, h2)

ab.

2. (Non-degeneracy) ∃g1 ∈ G1, g2 ∈ G2 such that e(g1, g2) has order q in GT .

We require that the group operations in G1, G2, and GT as well the bilinear map e are computable in
deterministic polynomial time with respect to λ. Furthermore, the group descriptions of G1, G2, and GT

include generators of the respective cyclic groups.
We extend the pairing e to vectors of group elements over G1 and G2 by defining

e(gv1 , g
w
2 ) := e(g1, g2)

⟨v,w⟩.

Dual Pairing Vector Spaces. For a fixed (constant) dimension n, we will choose random bases

(d1, . . . ,dn) and (d∗
1, . . . ,d

∗
n)

of Zn
q , subject to the constraint that they are “dual orthonormal”, meaning that

⟨d∗
i ,dj⟩ = 0 mod q

whenever i ̸= j, and

⟨di,d
∗
i ⟩ = 1 mod q

for all i. We denote such algorithm as

(d1, . . . ,dn,d
∗
1, . . . ,d

∗
n)←R Dual(Zn

q ) or (d1,d
∗
1, . . . ,dn,d

∗
n)←R Dual(Zn

q ).

Then for generators g1 ∈ G1 and g2 ∈ G2, we have

e(gdi
1 , g

d∗
j

2 ) = 1

whenever i ̸= j, where 1 here denotes the identity element in GT .

Computational Assumptions. We now state the decisional Diffie-Hellman (DDH) and Subspace assump-
tions that are required in our security proof. We stress that all these assumptions hold under the symmetric
external Diffie-Hellman (SXDH) assumption is hard.
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Assumption 4 (DDH1: Decisional Diffie-Hellman Assumption in G1) Given a group generator G, we
define the following distribution:

G := (q,G1, G2, GT , g1, g2, e)←R G,
x, y, z ←R Zq,

T0 := gxy1 , T1 := gxy+z
1 ,

D := (G; g1, g2, g
x
1 , g

y
1).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvDDH1
A (λ) := |Pr[A(D,T0)− Pr[A(D,T1)]|

is negligible in the security parameter λ.

The dual of above assumption is decisional Diffie-Hellman assumption in G2 (denoted as DDH2), which is
identical to Definitions 4 with the roles of G1 and G2 reversed. We say that:

Definition 3. The symmetric external Diffie-Hellman (SXDH) assumption holds if DDH problems are
intractable in both G1 and G2.

The Subspace assumptions were introduced in [23, 11, 31]. In this paper, specifically, we require the
following Subspace assumption in G1, which is similar with the SXDH-based Subspace assumptions of [11]
but involves n+ 1 bases pairs chosen independently at random (see also [24]).

Assumption 5 (DS1: Decisional Subspace Assumption in G1) Given a group generator G(·), define the
following distribution:

G := (q,G1, G2, GT , g1, g2, e)←R G(1λ),
(d0,d

∗
0, f0, f

∗
0 ), . . . , (dn,d

∗
n, fn, f

∗
n)←R Dual(Z2

q),

τ1, τ2, µ1, µ2 ←R Zq,

U0 := g
µ1d∗

0+µ2f∗0
2 , . . . , Un := g

µ1d∗
n+µ2f∗n

2 ,

V0 := gτ1d0
1 , . . . , Vn := gτ1dn

1 ,

W0 := gτ1d0+τ2f0
1 , . . . ,Wn := gτ1dn+τ2fn

1 ,

D :=
(
G; gd0

1 , gf01 , g
d∗
0

2 , . . . , gdn
1 , gfn1 , g

d∗
n

2 , U0, . . . , Un, µ2

)
.

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvDS1
A (λ) := |Pr[A(D,V0, . . . , Vn) = 1]− Pr[A(D,W0, . . . ,Wn) = 1]|

is negligible in the security parameter λ.

Lemma 4. If the DDH assumption in G1 holds, then the Subspace assumption in G1 stated in Definition 5
also holds. More precisely, for any adversary A against the Subspace assumption in G1, there exist
probabilistic algorithms B such that

AdvDS1
A (λ) ≤ AdvDDH1

B (λ)

and Time(B) ≈ Time(A) + poly(λ, n) where poly(λ, n) is independent of Time(A).

The proof of above lemma is essentially the same as given in [11], but for completeness, we include a
proof in Section D.
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A.2 Construction

Setup(1λ, [n]): On input an attribute universe [n], generate (di,d
∗
i , fi, f

∗
i )←R Dual(2), for i = 0, 1, . . . , n.

Pick α, ζ ←R Zq. Output

MPK := ( e(g1, g2)
α, gd0

1 , . . . , gdn
1 ) and MSK := ( α, ζ, g

d∗
0

1 , . . . , g
d∗
n

1 , g
f∗0
1 , . . . , g

f∗n
1 ).

Enc(MPK,x,m): On input an attribute vector x ∈ {0, 1}n and m ∈ GT , output

CTx :=
(
C0 := gsd0

1 , C1 := gx1sd1
1 , . . . , Cn := gxnsdn

1 , Cn+1 := e(g1, g2)
αs ·m

)
∈ (G2

1)
1+n ×GT ,

where s←R Zq.

KeyGen(MPK, MSK,A := (M, ρ)): On input an access structure A := (M, ρ), where M ∈ Zℓ×ℓ′
q and

ρ : [ℓ] → [n], pick random vectors u,v ←R Zℓ′
q such that 1u = α, 1v = ζ and set αj := Mju,

ζj := Mjv, for j ∈ [ℓ]. Output

SKA :=

(
Dj := g

rjd
∗
0+r′jf

∗
0

2 , D′
j := g

(αj−rj)d
∗
ρ(j)

+(ζj−r′j)f
∗
ρ(j)

2 : j ∈ [ℓ]

)
∈ (G2

2)
2ℓ

where r1, r
′
1 . . . , rℓ, r

′
ℓ ←R Zq.

Dec(MPK, SKA, CTx): If x satisfies A, compute ω1, . . . , ωℓ ∈ Zq such that∑
j:xρ(j)=1

ωjMj = 1.

Then, compute

e(g1, g2)
αs ←

∏
j:xρ(j)=1

(
e(C0, Dj) · e(Cρ(j), D

′
j

)ωj

,

and recover the message as m← Cn+1/e(g1, g2)
αs ∈ GT .

Correctness. Observe that

e(C0, Dj) · e(Cρ(j), D
′
j) = e(gsd0

1 , g
rjd

∗
0+r′jf

∗
0

2 ) · e(gxρ(j)sdρ(j)

1 , g
(αj−rj)d

∗
ρ(j)

+(ζj−r′j)f
∗
ρ(j)

2 )

= e(g1, g2)
rjsd0·d∗

0 · e(g1, g2)(αjs−rjs)dρ(j)·d∗
ρ(j)

= e(g1, g2)
αjs.

In addition, we have ∑
j:xρ(j)=1

ωjαj =
∑

j:xρ(j)=1

ωjMju = 1u = α.

This means ∏
j:xρ(j)=1

(
e(C ′

ρ(j), Dj) · e(Cρ(j), D
′
j)
)ωj

=
∏

j:xρ(j)=1

e(g1, g2)
ωjαjs = e(g1, g2)

αs.

Correctness follows readily.

A.3 Proof of Security

We prove the following theorem:
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Theorem 2. Under the SXDH assumption (described in Section A.1), our KP-ABE scheme defined in
Section A.2 is semi-adaptively secure (in the sense of Definition 2). More precisely, for any adversary A
that makes at most q key queries against the KP-ABE scheme, there exist probabilistic algorithms B1,B2
such that

AdvKP-ABE
A (λ) ≤ AdvDDH1

B1
(λ) + AdvDDH2

B2
(λ) + 3/q,

and

max{Time(B1),Time(B2)} ≈ Time(A) + q · poly(λ, n),

where poly(λ, n) is independent of Time(A).

The proof follows via a series of games. To describe the games, we must first define semi-functional keys
and ciphertexts. Fix random generators g1, g2, and let x∗ denote the semi-adaptive challenge.

Semi-functional ciphertext.

CTx :=

(
g
sd0+ s′f0
1 , g

xisdi+ xis
′fi

1 , e(g1, g2)
αs+ ζs′ ·m

)
,

where s′ ←R Zq.

Semi-functional secret key.

SKA :=

 g
rjd

∗
0+r′jf

∗
0

2 , g
(αj−rj)d

∗
ρ(j)

+(ζj−r′j)f
∗
ρ(j)

2 : x∗ρ(j) = 1

g
rjd

∗
0+r′jf

∗
0

2 , g
(αj−rj)d

∗
ρ(j)

+(ζj−r′j− α′
j )f∗

ρ(j)

2 : x∗ρ(j) = 0

 ,

where fresh α′
1, . . . , α

′
ℓ ←R Zq are chosen for each secret key.

Game Sequence. We consider the following sequence of games:

– Game0: is the real security game (c.f. Section 2.3).

– Game1: is the same as Game0 except that the challenge ciphertext is semi-functional.

– Game2: is the same as Game1 except that all keys are semi-functional. (This step is simpler than the
corresponding transition in the composite-order setting.)

– Game3: is the same as Game2 except that the challenge ciphertext is a semi-functional encryption of a
random message in GT .

Fix an adversary A. We write Advx(λ) to denote the advantage of A in Gamex. It is easy to see that
Adv3(λ) = 0, because the view of the adversary is Game3 is independent of the challenge bit β. We complete
the proof by establishing the following sequence of lemmas.

Lemma 5 (Normal to semi-functional ciphertext). There exists an adversary B1 such that:

|Adv0(λ)− Adv1(λ)| ≤ AdvDDH1
B1

(λ)

and Time(B1) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. We construct an adversary B1 for Subspace assumption in G1 using A. Recall that in Subspace
assumption in G1, the adversary is given

D := ( G; gd0
1 , gf01 , g

d∗
0

2 , . . . , gdn
1 , gfn1 , g

d∗
n

2 , U0, . . . , Un ),
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where U0, . . . , Un are distributed as

g
αd∗

0+ζf∗0
2 , . . . , g

αd∗
n+ζf∗n

2 ,

along with T0, . . . , Tn, where T0, . . . , Tn are distributed as

gsd0
1 , . . . , gsdn

1 or gsd0+s′f0
1 , . . . , gsdn+s′fn

1 .

Here,B1 simulates Game0 if T0, . . . , Tn are distributed as the former and Game1 if T0, . . . , Tn are distributed
as the latter. We have named the exponents in the Assumption so that the quantity α, ζ in the assumption
will correspond exactly to α, ζ in MSK, and the quantity s, s′ in the assumption will correspond the random
exponents s, s′ used in the (semi-functional) ciphertext.

Specifically, B1 proceeds as follows:

Setup. B1 outputs

MPK := ( e(gd0
1 , U0), g

d0
1 , . . . , gdn

1 ).

We note that

( g
d∗
0

2 , . . . , g
d∗
n

2 , U0, . . . , Un;T0, . . . , Tn )

is known to B1. The adversary A outputs a challenge x∗ := (x∗1, . . . , x
∗
n).

Challenge Ciphertext. Upon receiving two equal-length messages m0 and m1 from A, B1 picks β ←R

{0, 1} and outputs the semi-functional challenge ciphertext as:

CTx∗ :=
(
T0, T

x∗
i

i , e(T0, U0) ·mβ

)
.

Now, suppose T0, . . . , Tn are distributed as gsd0+s′f0
1 , . . . , gsdn+s′fn

1 . Then,

T
x∗
i

i = g
x∗
i sdi+x∗

i s
′fi

1 , e(T0, U0) ·mβ = e(g1, g2)
αs+ζs′ ·mβ.

Now, if s′ = 0 (i.e., T0, . . . , Tn are distributed as gsd0
1 , . . . , gsdn

1 ), this would indeed be a normal
encryption. On the other hand, if s′ ←R Zq instead, this would indeed be a semi-functional encryption.

Key Queries. On input A := (M, ρ), B1 needs to generate a normal key SKA, which has the distribution(
Dj := g

rjd
∗
0+r′jf

∗
0

2 , D′
j := g

αjd
∗
ρ(j)

+ζjf
∗
ρ(j)

2 · g
−(rjd

∗
ρ(j)

+r′jf
∗
ρ(j)

)

2 : j ∈ [ℓ]

)
.

The main challenge lies in simulating the term g
αjd

∗
ρ(j)

+ζjf
∗
ρ(j)

2 . We begin with the remaining terms.
Given (g

d∗
0

2 , . . . , g
d∗
n

2 ) and U0, . . . , Un, along with some j ∈ [ℓ], we can easily sample U ′
j,0, . . . , U

′
j,n

which are distributed as:

g
rjd

∗
0+r′jf

∗
0

2 , . . . , g
rjd

∗
n+r′jf

∗
n

2 ,

where rj , r
′
j ←R Zq. Namely, pick r̃j , r̃

′
j ←R Zq, and output

(g
d∗
0

2 )r̃j · U
r̃′j
0 , . . . , (g

d∗
n

2 )r̃j · U
r̃′j
n .

This allows us to rewrite SKA as:(
U ′
j,0, g

αjd
∗
ρ(j)

+ζjf
∗
ρ(j)

2 · (U ′
j,ρ(j))

−1 : j ∈ [ℓ]

)
.

21



Now, we just have to simulate the term g
αjd

∗
ρ(j)

+ζjf
∗
ρ(j)

2 given Uρ(j) := g
αd∗

ρ(j)
+ζf∗

ρ(j)

2 . To do this, B1 picks
ũ, ṽ ∈ Zℓ′

q such that

1ũ = 0 and 1ṽ = 1,

and implicitly sets

u := αṽ + ũ and v := ζṽ.

Observe that u,v have indeed the correct distributions. Recall that we set αj := Mju and ζj := Mjv,
which means αj = α ·Mjṽ +Mjũ and ζj = ζ ·Mjṽ, and thus

αjd
∗
ρ(j) + ζjf

∗
ρ(j) = Mjṽ · (αd∗

ρ(j) + ζf∗ρ(j)) +Mjũ · d∗
ρ(j).

We can then rewrite g
αjd

∗
ρ(j)

+ζjf
∗
ρ(j)

2 as a function of ũ, ṽ and Uρ(j). That is, B1 simply outputs:

SKA :=

(
U ′
j,0, U

Mj ṽ

ρ(j) · (g
d∗
ρ(j)

2 )Mj ũ · (U ′
j,ρ(j))

−1 : j ∈ [ℓ]

)
,

which would indeed be a normal secret key.

We may therefore conclude that: |Adv0(λ)− Adv1(λ)| ≤ AdvDDH1
B1

(λ). ⊓⊔

Lemma 6 (Normal to semi-functional keys). There exists an adversary B2 whose running time is
essentially the same as that of A such that:

|Adv1(λ)− Adv2(λ)| ≤ AdvDDH2
B2

(λ) + 2/q

and Time(B2) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. We construct an adversary B2 for DDH assumption in G2 using A. Recall that in DDH assumption
in G2, the adversary is given D := (G; g1, g2, g

x
2 , g

y
2) along with T , where T is distributed as gxy2 or gxy+z

2 .
Here, we assume that y, z ←R Z∗

p2 , which yields a 2/q negligible difference in the advantage; B2 simulates
Game1 if T = gxy2 and Game2 if T = gxy+z

2 .
Specifically, B2 proceeds as follows:

Setup. B2 samples α, ζ ←R Zq, and (di,d
∗
i , f̃i, f̃

∗
i )←R Dual(2), for i = 0, 1, . . . , n. B2 outputs

MPK := ( e(g1, g2)
α, gd0

1 , . . . , gdn
1 ).

Moreover, we note that

( α, ζ, g
d∗
0

2 , . . . , g
d∗
n

2 ; g1, g2, g
x
2 , g

y
2 , f̃0, f̃

∗
0 , . . . , f̃n, f̃

∗
n;T )

is known to B2.

Challenge Attribute. Upon receiving a challenge x∗ := (x∗1, . . . , x
∗
n) where x∗k = 0, B2 implicitly sets the

parameters

( f0, f
∗
0 ) := ( f̃0, f̃

∗
0 ),

( fi, f
∗
i ) := ( f̃i, f̃

∗
i ) : x∗i = 1,

( fi, f
∗
i ) := ( y−1f̃i, yf̃

∗
i ) : x∗i = 0.

Note that all the bases are properly distributed.
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Challenge Ciphertext. Upon receiving two equal-length messages m0 and m1 from A, B2 picks β ←R

{0, 1} and outputs the semi-functional challenge ciphertext as:

CTx∗ :=
(
gsd0+s′ f̃0
1 , g

x∗
i (sdi+s′ f̃i)

1 , e(gαs+ζs′

1 , g2) ·mβ

)
.

Key Queries. On input A := (M, ρ), B2 needs to generate a secret key SKA of the form:
g
rjd

∗
0+r′jf

∗
0

2 , g
(αj−rj)d

∗
ρ(j)

+(ζj−r′j)f
∗
ρ(j)

2 : x∗ρ(j) = 1

g
rjd

∗
0+r′jf

∗
0

2 , g
(αj−rj)d

∗
ρ(j)

2 · g
(ζj−r′j)f

∗
ρ(j)

2 : (x∗ρ(j) = 0) ∧ (T = gxy2 )

g
rjd

∗
0+r′jf

∗
0

2 g
(αj−rj)d

∗
ρ(j)

2 · g
(ζj−r′j−α′

j)f
∗
ρ(j)

2 : (x∗ρ(j) = 0) ∧ (T = gxy+z
2 )

 ,

where α′
1, . . . , α

′
ℓ ←R Zq.

Note that we know α, ζ and can therefore compute αj := Mju, ζj := Mjv as in the normal KeyGen.

We proceed via a case analysis for j. The case x∗ρ(j) = 1 is straight-forward; we know g
f∗0
2 = g

f̃∗0
2 ,

g
f∗
ρ(j)

2 = g
f̃∗
ρ(j)

2 . This leaves us with j such that x∗ρ(j) = 0. Here, B2 picks δj , δ′j ←R Zq and implicitly sets

r′j := xδj + δ′j .

We can then rewrite the j’th normal subkey as:(
g
rjd

∗
0

2 · (gx2 )δj f̃
∗
0 · g

δ′j f̃
∗
0

2 , g
(αj−rj)d

∗
ρ(j)

2 · (gxy2 )
−δj f̃

∗
ρ(j) · (gy2)

(ζj−δ′j)f̃
∗
ρ(j)

)
.

Here, we want to replace gxy2 with T . B2 outputs as the j’th subkey(
g
rjd

∗
0

2 · (gx2 )δj f̃
∗
0 · g

δ′j f̃
∗
0

2 , g
(αj−rj)d

∗
ρ(j)

2 · T−δj f̃
∗
ρ(j) · (gy2)

(ζj−δ′j)f̃
∗
ρ(j)

)
.

Now, suppose T = gxy+z
2 . Then,

g
rjd

∗
0

2 · (gx2 )δj f̃
∗
0 · g

δ′j f̃
∗
0

2 = g
rjd

∗
0+r′jf

∗
0

2 ,

g
(αj−rj)d

∗
ρ(j)

2 · T−δj f̃
∗
ρ(j) · (gy2)

(ζj−δ′j)f̃
∗
ρ(j) = g

(αj−rj)d
∗
ρ(j)

2 · (gxy+z
2 )

−δj f̃
∗
ρ(j) · (gy2)

(ζj−δ′j)f̃
∗
ρ(j)

= g
(αj−rj)d

∗
ρ(j)

+(ζj−r′j−zy−1δj)f
∗
ρ(j)

2 ,

where B2 implicitly sets α′
j := zy−1δj . Now, if z = 0 (i.e., T = gxy2 ), this would indeed be a normal

subkey. On the other hand, if z ←R Z∗
q , this would be a semi-functional subkey, and where (r′j , α

′
j) are

pairwise-independent. In summary, B2 outputs

SKA :=

 g
rjd

∗
0+r′j f̃

∗
0

2 , g
(αj−rj)d

∗
ρ(j)

+(ζj−r′j)f̃
∗
ρ(j)

2 : x∗ρ(j) = 1

g
rjd

∗
0

2 · (gx2 )δj f̃
∗
0 · g

δ′j f̃
∗
0

2 , g
(αj−rj)d

∗
ρ(j)

2 · T−δj f̃
∗
ρ(j) · (gy2)

(ζj−δ′j)f̃
∗
ρ(j) : x∗ρ(j) = 0

 .

We may therefore conclude that: |Adv1(λ)− Adv2(λ)| ≤ AdvDDH2
B2

(λ) + 2/q. ⊓⊔

Lemma 7 (Final transition). For any adversary A:

|Adv2(λ)− Adv3(λ)| ≤ 1/q.

Proof. To prove this lemma, it suffices to show that ζ is completely random, even given all of the semi-
functional keys in Game2. This would mean that the exponent ζs′ in the semi-functional ciphertext is
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distributed as a random value in Zq (if s′ ̸= 0). This would in turn imply that challenge ciphertext in
Game2 is statistically close to a semi-functional encryption of a random message in GT .

For each key query A := (M, ρ), a semi-functional key has the distribution:

SKA :=

 g
rjd

∗
0+r′jf

∗
0

2 , g
(αj−rj)d

∗
ρ(j)

+(ζj−r′j)f
∗
ρ(j)

2 : x∗ρ(j) = 1

g
rjd

∗
0+r′jf

∗
0

2 , g
(αj−rj)d

∗
ρ(j)

+(ζj−r′j−α′
j)f

∗
ρ(j)

2 : x∗ρ(j) = 0

 ,

where fresh α′
1, . . . , α

′
ℓ ←R Zq are chosen for each secret key. It suffices to show that the subkeys

corresponding to x∗ρ(j) = 1 do not reveal any information about ζ, since the share ζj in the remaining
subkeys are completely masked by α′

j .
By definition of the KP-ABE security game, x∗ does not satisfy A, so 1 /∈ span⟨Mx∗⟩. (Refer to

Definition 1 for the notation.) Therefore, we can efficiently compute ṽ1 ∈ Zℓ′
q such that

Mx∗ ṽ1 = 0 and 1ṽ1 = 1.

Next, we sample ṽ0 ←R Zℓ′
q such that 1ṽ0 = 0, and implicitly set

v := ζ · ṽ1 + ṽ0.

Observe that v has indeed the correct distribution. Recall that we set ζj := Mjv, which yields

ζj =

{
Mjṽ0 if x∗ρ(j) = 1

ζ ·Mjṽ1 +Mjṽ0 if x∗ρ(j) = 0
.

This means that the subkeys(
g
rjd

∗
0+r′jf

∗
0

2 , g
(αj−rj)d

∗
ρ(j)

+(Mj ṽ0−r′j)f
∗
ρ(j)

2 : x∗ρ(j) = 1

)
reveal no information about ζ since the distribution of ṽ0 is independent of ζ. Hence, ζ is statistically hidden
for the semi-functional key SKA. Therefore, Game2 and Game3 are statistically indistinguishable except with
probability 1/q (namely, the case s′ = 0).
We may then conclude that: |Adv2(λ)− Adv3(λ)| ≤ 1/q. ⊓⊔

B Publicly Verifiable Computation

As an application, we obtain improved publicly verifiable delegation schemes for Boolean formula with
semi-adaptive soundness, where correctness of the computation is guaranteed even if the client’s input is
chosen adaptively depending on its public key. Most of the definitions here are taken almost verbatim from
[32].

B.1 Definition for Publicly Verifiable Computation

Definition 4 (Publicly Verifiable Computation [32, 16]). A publicly verifiable computation protocol (with
preprocessing) consists of four algorithms (KeyGen,ProbGen,Compute,Verify):

Setup(1λ,F) → (PKF,EKF). The randomized key generation algorithm takes in a security parameter 1λ

and a function F. It outputs a public key PKF and an evaluation key EKF.

ProbGen(PKF,x) → (σx,VKF). The randomized problem generation algorithm uses the public key PKF

to encode an input x into public values σx and VKx. The value σx is given to the worker to compute
with, whereas VKx is made public, and later used for verification.
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Compute(EKF, σx)→ σout. The deterministic worker algorithm uses the evaluation key EKF together with
the value σx to compute a value σout.

Verify(VKx, σout) → y. The deterministic verification algorithm uses the verification key VKx and the
worker’s output σout to compute a string y ∈ {0, 1}∗ ∪ {⊥}. Here, the special symbol ⊥ signifies that
the verification algorithm rejects the worker’s answer σout.

Correctness. A publicly verifiable computation protocol is correct for a class of functions F if for
any F ∈ F , any pair of keys (PKF,EKF) ← Setup(1λ,F), any x ∈ Domain(F), any (σx,VKF) ←
ProbGen(PKF,x), and any σout ← Compute(EKF, σx)), the verification algorithm Verify on input VKx

and σout outputs y = F(x).

B.2 Security for Publicly Verifiable Computation

There are three notions of security (soundness) for publicly verifiable computation, depending on the level
of adaptivity the client has in choosing the instance x∗ with respect to PKF and EKF:

– the weakest notion requires that x∗ be chosen independently of PKF,EKF. This is the notion achieved
in [32] based on the GPSW KP-ABE.

– an intermediate notion (introduced in this work) requires that x∗ by chosen independently of EKF, but
may potentially depend on PKF.

– the strongest notion allows x∗ to depend on both PKF and EKF.

We remind the reader PKF is public and reused over computation on many instances. For this reason,
we believe that it is important that we allow client’s input x∗ to depend on PKF in order to achieve
any meaningful notion of security. On the other hand, EKF is only known to the server carrying out the
computation; as such, it seems reasonable to consider relaxed scenarios where the client’s input does not
depend on the server’s private evaluation key EKF. Indeed, both of these are captured in the intermediate
notion, which we formalize in the next paragraph.

Semi-adaptive soundness. Let a publicly verifiable computation scheme be for a class of functions F , and
letA = (A1,A2) be a stateful adversary. Consider the experiment ExpPUBVERIF

A [F, λ] for any F ∈ F below:

Experiment ExpPUBVERIF
A [F, λ]

(PKF,EKF)← Setup(1λ,F);

(x∗, state)← A1(PKF);

(σx∗ ,VKx∗)← ProbGen(PKF,x
∗);

(σ∗
out)← A2(state, σx∗ ,VKF,EKF);

y∗ ← Verify(VKx∗ , σ∗
out);

If y∗ ̸= ⊥ and y∗ ̸= F(x∗), outputs “1”, else outputs “0”;

The advantage of an adversary A is defined to be Pr[ExpPUBVERIF
A [F, λ] = 1].

Definition 5. A publicly verifiable computation protocol is secure for a class of functions F if all PPT
adversaries A = (A1,A2) achieve at most a negligible advantage in the above security game for every
function F ∈ F .
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Remark 2. Informally, we can think of A1 as a client choosing the input for delegation, and A2 as the
cheating server. While we do not think of the client as being necessarily adversarial, we want to allow an
adversaryA to choose the input of the client in order to guarantee soundness over inputs that may be selected
from some “worst-case” distributions, possibly correlated with the public parameters PKF.

Remark 3. The security definition “composes” in the sense that security as defined for a single instances
implies security for multiple instances x∗

1,x
∗
2, . . ..

B.3 Efficiency for Publicly Verifiable Computation

Definition 6 (Efficiency). A publicly verifiable computation protocol is efficient for a class of functions F
that act on n = n(λ) bits if there is a polynomial p such that:6

– the running time of ProbGen and Verify together is at most p(n, λ), the rest of the algorithms are
probabilistic polynomial-time, and

– there exists a function F ∈ F whose running time is ω(p(n, λ)).7

In a similar vein, a publicly verifiable computation protocol is depth-efficient if the computation depth
of ProbGen and Verify combined (written as Boolean circuits) is at most p(n, λ), whereas there is a function
F ∈ F whose computation depth is ω(p(n, λ)).

B.4 Publicly Verifiable Computation from KP-ABE

We recall the Main Theorem and the construction of a publicly verifiable computation protocol from a
KP-ABE scheme from [32]. In the remaining of this section, we will use the notion of Boolean function
(implemented by a family of circuits C), which is equivalent to access structure in KP-ABE schemes. In
fact, it is sufficient for the KP-ABE to be secure against an adversary that only requests for a single secret
key.

Theorem 3 (implicit in [32, Theorem 2]). Let F be a class of Boolean functions (implemented by a family
of circuits C), and let F̄ = {F̄|F ∈ F} where F̄ denotes the complement of the function F. Let a KP-ABE
scheme be semi-adaptively secure for F ∪ F̄ , and let H be any one-way function.

Then, there is a publicly verifiable computation protocol (secure under Definition 5) for F . If the circuit
family C is unbounded (resp. depth-unbounded), then the protocol is efficient (resp. depth-efficient) in the
sense of Definition 6.

For completeness, we present the publicly verifiable computation protocol from [32]. Let (ABE.Setup,
ABE.KeyGen, ABE.Enc, ABE.Dec) be four algorithms of a KP-ABE scheme for the class of functions
F ∪ F̄ , then the publicly verifiable computation protocol consisting of four algorithms (Setup, ProbGen,
Compute, Verify) for F works as follows:

– Setup(1λ,F): On input a function F ∈ F with input length n, run the KP-ABE setup algorithm twice,
to generate two independent key-pairs

(MPK0, MSK0)← ABE.Setup(1λ, [n]) and (MPK1, MSK1)← ABE.Setup(1λ, [n]).

Generate two secret keys

SKF̄ ← ABE.KeyGen(MPK0, MSK0, F̄) (corresponding to F̄)

6 To be completely precise, one has to talk about a family F = {Fn}n∈N parameterized by the input length n. We simply speak
of F to implicitly mean Fn whenever there is no cause for confusion.

7 This condition is to rule out trivial protocols, e.g., for a class of functions that can be computed in time less than p(λ).
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and

SKF ← ABE.KeyGen(MPK1, MSK1,F) (corresponding to F).

Output the public key PKF := (MPK0, MPK1) and the evaluation key EKF := (SKF̄, SKF).

– ProbGen(PKF,x): On input x and the public key PKF, sample two uniformly messages m0 and m1 of
equal length from the message space, compute the ciphertexts

CTx,0 ← ABE.Enc(MPK0,x,m0) and CTx,1 ← ABE.Enc(MPK1,x,m1).

Output the value σx := (CTx,0, CTx,1) (to be sent to the worker), and the verification key VKx :=

(H(m0),H(m1)), where H is the one-way function.

– Compute(EKF, σx): On input the value σx := (CTx,0, CTx,1) and the evaluation key EKF :=

(SKF̄, SKF), compute

m′
0 ← ABE.Dec(MSK0, SKF̄, CTx,0) and m′

1 ← ABE.Dec(MSK1, SKF, CTx,1).

Output σout := (m′
0,m

′
1).

– Verify(VKx, σout): On input VKx := (H(m0), H(m1)) and σout := (m′
0,m

′
1). Output

y :=


0 if H(m′

0) = H(m0) and H(m′
1) ̸= H(m1)

1 if H(m′
1) = H(m1) and H(m′

0) ̸= H(m0)

⊥ otherwise

C On Assumption 3

In this section, we provide more discussion on Assumption 3. We first show that Assumption 3 is implied
by the following assumption, which is essentially the 3PDH assumption from [6] except that we consider
three (instead of two) subgroups.

Assumption 6 (3PDH: Composite 3-party Diffie-Hellman Assumption) Given a group generator G, we
define the following distribution:

G := (N = p1p2p3, GN , GT , e)←R G,
a, b, c←R ZN ,

g1 ←R Gp1 , g2 ←R Gp2 , g3, R3, S3, T3 ←R Gp3 ,

T0 := gc2T3, T1 := gc+d
2 T3,

D := (G; g1, g2, g
a
2 , g

b
2, g

ab
2 R3, g

abc
2 S3, g3).

We assume that for any PPT algorithm A,

Adv3CPDH
A (λ) :=

∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]
∣∣

is negligible in the security parameter λ.

Lemma 8 (3PDH Implies AS3). For any adversary A, there exists an adversary B such that:

AdvAS3
A (λ) ≤ Adv3PDH

B (λ).

and Time(B) ≈ Time(A) + poly(λ) where poly(λ) is independent of Time(A).
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Proof. We construct an adversary B for 3PDH assumption using A. Recall that in 3PDH assumption, the
adversary is given (

G; g1, g2, g
a
2 , g

b
2, g

ab
2 R3, g

abc
2 S3, g3, g

c+d
2 T3

)
,

where either d = 0 or d←R Zp; B picks

U1 ←R Gp1 , U2 ←R Gp2 , U3 ←R Gp3 ,

implicitly set

x := ab, y := c+ d, z := −abd,
X3 := R3, Y3 := T3, W3 := S3,

and output (
G; g1, U1U2, g

ab
2 R3, g

c+d
2 T3, g2U3, g3, g

abc
2 S3

)
.

Now, observe that xy + z = ab(c+ d)− abc = abc and

– if d = 0, the output is distributed as (G; g1, U1U2, g
x
2X3, g

y
2Y3, g2U3, g3, g

xy
2 W3);

– if d←R Zp, the output is distributed as (G; g1, U1U2, g
x
2X3, g

y
2Y3, g2U3, g3, g

xy+z
2 W3).

The lemma then follows readily. ⊓⊔

Next, we prove that Assumption 3 holds in the generic group model. Instead of working directly with
Assumption 3, we introduce Assumption 7, which is simpler to state and trivially implies Assumption 3, and
then show that Assumption 7 holds in the generic group model.

Assumption 7 Given a group generator G, we define the following distribution:

G := (N = p1p2p3, G,GT , e)←R G,
x, y, z ←R ZN ,

g1 ←R Gp1 , g2 ←R Gp2 , g3, X3, Y3 ←R Gp3 ,

T0 = gxy2 , T1 = gz2 ,

D := (G; g1, g2, g3, g
x
2X3, g

y
2Y3).

We assume that for any PPT algorithm A,

AdvAS6
A (λ) :=

∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]
∣∣

is negligible in the security parameter λ.

Lemma 9. Assumption 7 holds in the generic group model under the assumption that finding a non-trivial
factor of N (the group order) is hard.

Proof. We appeal to the general framework introduced in [22, Theorem A.2] for proving assumptions in the
generic group model. In the framework, Assumption 7 may be written as:

A1 = (1, 0, 0), A2 = (0, 1, 0), A3 = (0, 0, 1), A4 = (0, X,X3), A5 = (0, Y, Y3),

T0 = (0, XY, 0), T1 = (0, Z, 0).

We have S := {i | e(T0, Ai) ̸= e(T1, Ai)} = {2, 4, 5}. We need to verify that the following conditions
holds:

1. Each of T0 and T1 is independent of {Ai}.
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2. For k ∈ S it holds that e(T0, Ak) is independent of {e(Ai, Aj)}
∪
{e(T0, Ai)}i̸=k and e(T1, Ak) is

independent of {e(Ai, Aj)}
∪
{e(T1, Ai)}i ̸=k.

It is easy to see that Condition 1 holds since the second component of T0 (resp. T1) contains XY (resp.
Z) that is not present amongst A1, A2, A3, A4, A5. Next, we proceed to condition 2. We start with T0 and
obtain the following tuples:

C0,2 := e(T0, A2) = [0, XY, 0], C0,4 := e(T0, A4) = [0, X2Y, 0], C0,5 := e(T0, A5) = [0, XY 2, 0],

A2,4 := e(A2, A4) = [0, X, 0], A2,5 := e(A2, A5) = [0, Y, 0],

A3,4 := e(A3, A4) = [0, 0, X3], A3,5 := e(A3, A5) = [0, 0, Y3],

A4,5 := e(A4, A5) = [0, XY,X3Y3].

Here, we omit all [0, 0, 0] terms. We need to verify the following three statements:

– C0,2 = [0, XY, 0] is independent of C0,4 = [0, X2Y, 0], C0,5 = [0, XY 2, 0], A2,4 = [0, X, 0], A2,5 =

[0, Y, 0], A3,4 = [0, 0, X3], A3,5 = [0, 0, Y3], and A4,5 = [0, XY,X3Y3] since the only other way
to obtain an element whose second component contains XY is from A4,5, which yields the element
[0, XY,X3Y3]. But there is no other way to generate an element whose third component is X3Y3, and
hence no way to cancel that term.

– C0,4 = [0, X2Y, 0] is independent of C0,2 = [0, XY, 0], C0,5 = [0, XY 2, 0], A2,4 = [0, X, 0], A2,5 =

[0, Y, 0], A3,4 = [0, 0, X3], A3,5 = [0, 0, Y3], and A4,5 = [0, XY,X3Y3] since the second component
contains X2Y that cannot be generated any other way.

– C0,5 = [0, XY 2, 0] is independent of C0,2 = [0, XY, 0], C0,4 = [0, X2Y, 0], A2,4 = [0, X, 0], A2,5 =

[0, Y, 0], A3,4 = [0, 0, X3], A3,5 = [0, 0, Y3], and A4,5 = [0, XY,X3Y3] since the second component
contains XY 2 that cannot be generated any other way.

Finally, we need to verify Condition 2 for T1. Here, we obtain the following tuples:

C1,2 := e(T1, A2) = [0, Z, 0], C1,4 := e(T1, A4) = [0, ZX, 0], C1,5 := e(T1, A5) = [0, ZY, 0].

Observe that each of these three tuples are independent of the other two tuples. Moreover, they are
independent of the {e(Ai, Aj)} terms, since the latter do not contain a Z-term. We conclude that
Assumption 7 holds in the generic group model. ⊓⊔

D Proof of Lemma 4

We assume there exists a PPT algorithmA breaking the Subspace assumption with non-negligible advantage
AdvDS1

A (λ). We create a PPT algorithm B which breaks the DDH assumption in G1 with non-negligible
advantage AdvDS1

A (λ). B is given D := (G; g1, g2, g
x
1 , g

y
1) along with T , where T is distributed as gxy1 or

gxy+z
1 .
B first samples n+ 1 pairs of random dual orthonormal bases, denoted by

(d̃0, d̃
∗
0, f̃0, f̃

∗
0 ), . . . , (d̃n, d̃

∗
n, f̃n, f̃

∗
n).

Then, B implicitly sets:

d0 := d̃0 + xf̃0, . . . ,dn := d̃n + xf̃n,

f0 := f̃0, . . . , fn := f̃n,

29



B also sets the dual basis as:

d∗
0 := d̃0, . . . ,d

∗
n := d̃n,

f∗0 := f̃∗0 − xd̃∗
0, . . . , f

∗
n := f̃∗n − xd̃∗

n.

It is clear that (d0,d
∗
0, f0, f

∗
0 ), . . . , (dn,d

∗
n, fn, f

∗
n) are properly distributed. We note that B can produce

all of gd0
1 , gf01 , . . . , gdn

1 , gfn1 (given g1, g
x
1 ) as well as g

d∗
0

2 , . . . , g
d∗
n

2 (given g2). However, B cannot produce
g
f∗0
2 , . . . , g

f∗n
2 (these require knowledge of gx2 ). B proceeds as follows:

– B creates U0, . . . , Un by choosing random values µ′
1, µ

′
2 ∈ Zq and setting:

U0 := g
µ′
1d

∗
0+µ′

2 f̃
∗
0

2 = g
(µ′

1+xµ′
2)d

∗
0+µ′

2f
∗
0

2 ,

...

Un := g
µ′
1d

∗
n+µ′

2 f̃
∗
n

2 = g
(µ′

1+xµ′
2)d

∗
n+µ′

2f
∗
n

2 ,

where B has implicitly set µ1 := µ′
1 + xµ′

2 and µ2 := µ′
2.

– Next, B computes:

T0 := T f̃0 · (gy1)
d̃0 , . . . , Tn := T f̃n · (gy1)

d̃n .

Now, suppose T = gxy+z
1 . Then

T0 = (gxy+z
1 )f̃0 · (gy1)

d̃0 = (gxy+z
1 )f0 · (gy1)

(d0−xf0) = gyd0+zf0
1 ,

...

Tn = (gxy+z
1 )f̃n · (gy1)

d̃n = (gxy+z
1 )fn · (gy1)

(dn−xfn) = gydn+zfn
1 ,

where B implicitly sets τ1 := y, τ2 := z. Observe that if z = 0 (namely, T = gxy1 ), T0, . . . , Tn would
indeed be distributed as V0, . . . , Vn. On the other hand, if z ←R Zq instead, T0, . . . , Tn would indeed be
distributed as W0, . . . ,Wn.

– Finally, B gives

D :=
(
G; gd0

1 , gf01 , g
d∗
0

2 , . . . , gdn
1 , gfn1 , g

d∗
n

2 , U0, . . . , Un, µ2

)
to A, along with T0, . . . , Tn.

We may then conclude that: AdvDS1
A (λ) ≤ AdvDDH1

B (λ).
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