Skip to main content

A Modern Tool for Modelling and Optimisation of Production in Underground Coal Mine

  • Chapter
eScience on Distributed Computing Infrastructure

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8500))

Abstract

A new calculation tool allowing the user to model and optimise production in underground coal mines is presented in the paper. Hard coal plays an essential role in the world economics. Its consumption in 2011 increased faster than for any other energy produced from raw materials (excluding renewable sources). Achieving the planned output levels depends, first of all, on results acquired in the mining design process. It is now possible to support this design process with modern tools, which can significantly increase future mine efficiency as well as the quality of the raw material extracted. The calculation service for optimisation of the production in underground coal mines (OPTiCoalMine) is one of such tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel Sabour, S.A.: Mine size optimization using marginal analysis. Resources Policy 28, 145–151 (2002)

    Article  Google Scholar 

  2. Barbaro, R., Ramani, R.: Generalized multiperiod MIP model for production scheduling and processing facilities selection and location. Mining Engineering 38(2), 107–114 (1986)

    Google Scholar 

  3. Brazil, M., Lee, D.H., Van Leuven, M., Rubinstein, J.H., Thomas, D.A., Wormald, N.C.: Optimising declines in underground mines. Mining Technology: IMM Trans. Sect. A 112(3), A164–A170 (2003)

    Google Scholar 

  4. Brazil, M., Thomas, D.A.: Network optimization for the design of underground mines. Networks 49(1), 40–50 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edyta, B.: A New Solution Supporting the Designing Process of Mining Operations in Underground Coal Mines. In: Drebenstedt, C., Singhal, R. (eds.) Mine Planning and Equipment Selection, pp. 53–63. Springer, Heidelberg (2014)

    Google Scholar 

  6. Brzychczy, E.: The planning optimization system for underground hard coal mines. Archives of Mining Sciences 56(2), 161–178 (2011)

    Google Scholar 

  7. Carlyle, W.M., Eaves, B.C.: Underground planning at Stillwater Mining Company. Interfaces 31(4), 50–60 (2001)

    Article  Google Scholar 

  8. Chanda, E.K.C.: An application of integer programming and simulation to production planning for a stratiform ore body. Mining Sci. Tech. 11(2), 165–172 (1990)

    Article  Google Scholar 

  9. Ciepiela, E., Nowakowski, P., Kocot, J., Harężlak, D., Gubała, T., Meizner, J., Kasztelnik, M., Bartyński, T., Malawski, M., Bubak, M.: Managing Entire Lifecycles of e-Science Applications in the GridSpace2 Virtual Laboratory – From Motivation through Idea to Operable Web-Accessible Environment Built on Top of PL-Grid e-Infrastructure. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 228–239. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Ciepiela, E., Zaraska, L., Sulka, G.D.: GridSpace2 Virtual Laboratory Case Study: Implementation of Algorithms for Quantitative Analysis of Grain Morphology in Self-assembled Hexagonal Lattices According to the Hillebrand Method. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 240–251. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Dornetto, L.D.: An adaptive control scheme – expert system – that optimizes the operation of a proposed underground coal mining system with applications to shortwall, longwall and room pillar mining systems. In: Proc. IEEE Internat. Conf. Systems Man, Cybernetics, pp. 209–214. International Academic Publishers, Pergamon Press, Beijing (1988)

    Google Scholar 

  12. Epstein, R., Gaete, S., Caro, F., Weintraub, A., Santibanez, P., Catalan, J.: Optimizing long term planning for underground copper mines. In: Proc. Copper 2003-Cobre 2003, 5th Internat. Conf., Santiago, Chile, vol. I, pp. 265–279. CIM and the Chilean Institute of Mining (2003)

    Google Scholar 

  13. Fava, L., Millar, D., Maybee, B.: Scenario evaluation through mine schedule optimisation. In: Kuyvenhoven, R., Rubio, E., Smith, M. (eds.) Proceedings of the 2nd International Seminar on Mine Planning, Gecamin, Santiago, Chile, pp. 1–10 (2011)

    Google Scholar 

  14. Gamache, M., Grimard, R., Cohen, P.: A shortest-path algorithm for solving the fleet management problem in underground mines. Eur. J. Oper. Res. 166(2), 497–506 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grieco, N., Dimitrakopoulos, R.: Managing grade risk in stope design optimization: Probabilistic mathematical programming model and application in sublevel stoping. Mining Techology: IMM Trans. Sect. A 116(2), 49–57 (2007)

    Article  Google Scholar 

  16. Harężlak, D., Kasztelnik, M., Ciepiela, E., Bubak, M.: Scripting Language Extensions Offered by the GridSpace Experiment Platform. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 217–227. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Huang, Y., Kumar, U.: Optimizing the number of load-hauldump machines in a Swedish mine by using queuing theory – A case study. Internat. J. Surface Mining Reclamation Environ. 8(4), 171–174 (1994)

    Article  Google Scholar 

  18. Jawed, M.: Optimal production planning in underground coal mines through goal programming: A case study from an Indian mine. In: Elbrond, J., Tang, X. (eds.) Proc. 24th Internat. Appl. Comput. Oper. Res. Mineral Indust (APCOM) Sympos., pp. 44–50. CIM, Montréal (1993)

    Google Scholar 

  19. Kumral, M.: Optimal location of a mine facility by genetic algorithms. Mining Technology: IMM Trans. Sect. A 113(2), 83–88 (2004)

    Article  Google Scholar 

  20. Kumral, M.: Reliability-based optimisation of a mine production system using genetic algorithms. J. Loss Prevention Process Indust. 18(3), 186–189 (2005)

    Article  Google Scholar 

  21. Lemelin, B., Abdel Sabour, S.A., Poulin, R.: An integrated evaluation system for mine planning under uncertainty. In: Magri, E. (ed.) Proc. 33rd Internat. Appl. Comput. Oper. Res. Mineral Indust (APCOM) Sympos., Santiago, pp. 262–269 (2007)

    Google Scholar 

  22. Li, Z., Topuz, E.: Optimizing design capacity and field dimensions of under-ground coal mines. In: Proc. 20th Internat. Appl. Comp. Math. Mineral Indust (APCOM) Sympos. Mining, vol. I, pp. 115–122. SAIMM, Johannesburg (1987)

    Google Scholar 

  23. Lizotte, Y., Elbrond, J.: Optimal layout of underground mining levels. CIM Bulletin 78(873), 41–48 (1985)

    Google Scholar 

  24. Magda, R., Franik, T.: Planning and design of rational parameters of longwall panels in underground hard coal mines. Mineral Resources Management 24(4), 107–117 (2008)

    Google Scholar 

  25. Magda, R.: Mathematical model for estimating the economic effectiveness of production process in coal panels and an example of its practical application. Internat. J. Prod. Econom. 34(1), 47–55 (1994)

    Article  Google Scholar 

  26. McNearny, R., Nie, Z.: Simulation of a conveyor belt network at an under-ground coal mine. Mineral Resources Engineering 9(3), 343–355 (2000)

    Article  Google Scholar 

  27. Miladinovic, M., Cebasek, V., Gojkovic, N.: Computer programs for design and modelling in mining. Underground Mining Engineering 19, 109–124 (2011)

    Google Scholar 

  28. Mutagwaba, W., Hudson, J.: Use of object-oriented simulation model to assess operating and equipment options for underground mine transport system. Mining Technology: IMM Trans. Sect. A 102, 89–94 (1993)

    Google Scholar 

  29. Newman, A., Kuchta, M.: Using aggregation to optimize long-term production planning at an underground mine. Eur. J. Oper. Res. 176(2), 1205–1218 (2007)

    Article  MATH  Google Scholar 

  30. Newman, A., Rubio, E., Caro, R., Weintarub, A., Eurek, K.: A review of operations research in mine planning. Interfaces 40(3), 222–245 (2010)

    Article  Google Scholar 

  31. Pendharkar, P.C., Rodger, J.A.: Nonlinear programming and genetic search application for production scheduling in coal mines. Ann. Oper. Res. 95(1-4), 251–267 (2000)

    Article  MATH  Google Scholar 

  32. Pędziwiatr, T.: OPTiCoalMine calculation service: Source code. ACC Cyfronet AGH, Kraków (2014)

    Google Scholar 

  33. Qinglin, C., Stillborg, B., Li, C.: Optimization of underground mining methods using grey theory and neural networks. In: Hennies, W., Ayres da Silva, L., Chaves, A. (eds.) 5th Internat. Sympos. Mine Planning Equipment Selection MPES, pp. 393–398, Sao Paulo (1996)

    Google Scholar 

  34. Rahal, D., Smith, M., Van Hout, G., Von Johannides, A.: The use of mixed integer linear programming for long-term scheduling in block caving mines. In: Camisani-Calzolari, F. (ed.) Proc 31st Internat. Appl. Comput. Oper. Res. Mineral Indust (APCOM) Sympos., pp. 123–131. SAIMM, Cape Town (2003)

    Google Scholar 

  35. Sarin, S.C., West-Hansen, J.: The long-term mine production scheduling problem. IIE Trans. 37(2), 109–121 (2005)

    Article  Google Scholar 

  36. Simsir, F., Ozfirat, M.K.: Determination of the most effective longwall equipment combination in longwall top coal caving (LTCC) method by simulation modeling. Internat. J. Rock Mech. Mining Sci. 45(6), 1015–1023 (2008)

    Article  Google Scholar 

  37. Smith, M., Sheppard, I., Karunatillake, G.: Using MIP for strategic life-of-mine planning of the lead/zinc stream at Mount Isa Mines. In: Camisani-Calzolari, F. (ed.) Proc. 31st Internat. Appl. Comput. Oper. Res. Mineral Indust (APCOM) Sympos., pp. 465–474. SAIMM, Cape Town (2003)

    Google Scholar 

  38. Snopkowski, R.: Longwall output plan considered in probability aspect. Arch. Min. Sci. 47(3), 413–420 (2002)

    Google Scholar 

  39. Topuz, E., Breeds, C., Karmis, M., Haycocks, C.: Comparison of two under-ground haulage systems. In: Proc. 17th Internat. Appl. Comput. Oper. Res. Mineral Indust (APCOM) Sympos., pp. 614–619. SME, Littleton (1982)

    Google Scholar 

  40. Topuz, E., Duan, C.: A survey of operations research applications in the mining industry. CIM Bulletin 82(925), 48–50 (1989)

    Google Scholar 

  41. Trout, L.: Underground mine production scheduling using mixed integer programming. In: Proc. 25th Internat. Appl. Comput. Oper. Res. Mineral Indust. (APCOM) Sympos., pp. 395–400. AusIMM (1995)

    Google Scholar 

  42. Winkler, B.: System for quality oriented mine production planning with MOLP. In: Proc. 27th Internat. Appl. Comput. Oper. Res. Mineral Indust (APCOM) Sympos., pp. 53–59. Royal School of Mines, London (1998)

    Google Scholar 

  43. Yun, Q., Liu, J., Chen, Y., Huang, G.: Optimization of planning and design in underground mines. In: Proc. 22nd Internat. Appl. Comput. Oper. Res. Mineral Indust (APCOM) Sympos., Berlin, pp. 255–260 (1990)

    Google Scholar 

  44. Zhang, H., Zhao, G.: CMEOC – An expert system in the coal mining industry. Expert Systems with Applications 16(1), 73–77 (1999)

    Article  Google Scholar 

  45. British Petroleum: BP Energy Outlook 2030 (2013)

    Google Scholar 

  46. British Petroleum: Statistical Review of World Energy 2013 (2013)

    Google Scholar 

  47. World Coal Association: Coal Facts 2012 (2013)

    Google Scholar 

  48. Bentley Systems Inc., http://www.bentley.com

  49. CAE Datamine International Ltd., http://www.cae.com

  50. Dassault Systémes GEOVIA Ltd., http://www.gemcomsoftware.com

  51. Maptec Pty Ltd., http://www.maptek.com

  52. Micromine, http://www.micromine.com

  53. Minemax, http://www.minemax.com

  54. Mintec Inc., http://www.minesight.com

  55. RockWare Inc., http://www.rockware.com

  56. Teberia Magazine, http://www.teberia.pl

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brzychczy, E. (2014). A Modern Tool for Modelling and Optimisation of Production in Underground Coal Mine. In: Bubak, M., Kitowski, J., Wiatr, K. (eds) eScience on Distributed Computing Infrastructure. Lecture Notes in Computer Science, vol 8500. Springer, Cham. https://doi.org/10.1007/978-3-319-10894-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10894-0_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10893-3

  • Online ISBN: 978-3-319-10894-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics