Skip to main content

Optimization of Profile Extrusion Processes Using the Finite Element Method and Distributed Computing

  • Chapter
eScience on Distributed Computing Infrastructure

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8500))

Abstract

This paper is dedicated to the development of a FEM model of the extrusion process of tubes and profiles made from Mg alloys. Mg alloys are characterized by low technological plasticity during extrusion. The model is designed to optimize the parameters of extrusion tubes on mandrel and profiles using the ductility of alloy as an objective function and the maximum value of temperature in the deformation zone as a limitation condition. Optimization of extrusion parameters requires a large number of FEM simulations that is why the solution based on distributed computing capabilities was used. The developed software generates a vector of simulation variants and runs them on a computer cluster in parallel mode in the PL-Grid Infrastructure. In this work, an example of optimization process and a procedure for obtaining the needed materials data for simulation using the case of Mg alloy were shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Machado, P.: Extrusion Die Design. In: Proceedings of Fifth International Extrusion Technology Seminar, Chicago, USA, vol. 1, pp. 385–389 (1992)

    Google Scholar 

  2. Kiuchi, M., Yanagimoto, J., Mendoza, V.: Three-dimensional FE simulation and extrusion die design. Journal of The Japan Society For Technology of Plasticity 39, 27–32 (1998)

    Google Scholar 

  3. Herberg, J., Gundeso, K., Skauvic, I.: Application of numerical simulation in design of extrusion dies. In: 6 Int. Aluminium Extrusion Technology Seminar, pp. 275–281 (1996)

    Google Scholar 

  4. Chenot, J.L., Bay, F.: An overview of numerical modeling techniques. Journal of Materials Processing Technology 80-81, 8–15 (1998)

    Article  Google Scholar 

  5. Chenot, J.L.: Resent contributions to the finite element modelling of metal forming processes. Journal of Materials Processing Technology 34, 9–18 (1992)

    Article  Google Scholar 

  6. Rens, B.J.E., Brekelmans, W.A.M., Baaijens, F.P.T.: A semi-structured mech generator applied to extrusion. In: Proc. of the 7 Int. Conf. on Numerical Methods in Industrial Forming Processes, Enschede, Netherlands, pp. 621–626 (1998)

    Google Scholar 

  7. Milenin, A., Gzyl, M., Rec, T., Płonka, B.: Computer aided design of wires extrusion from biocompatible Mg-Ca magnesium alloy. Archives of Metallurgy and Materials 59(2), 561–566 (2014)

    Article  Google Scholar 

  8. Milenin, A., Kustra, P.: Numerical and experimental analysis of wire drawing for hardly deformable biocompatible magnesium alloys. Archives of Metallurgy and Materials 58, 55–62 (2013)

    Article  Google Scholar 

  9. Milenin, A.: Mathematical modeling of operations of correcting the dies for section extruding. Metallurgicheskaya i Gornorudnaya Promyshlennost 1-2, 64–66 (2000)

    Google Scholar 

  10. Milenin, A., Berski, S., Banaszek, G., Dyja, H.: Theoretical analysis and optimisation of parameters in extrusion process of explosive cladded bimetallic rods. Journal of Materials Processing Technology SPEC. ISS 157-158, 208–212 (2004)

    Article  Google Scholar 

  11. Lishnij, A.I., Biba, N.V., Milenin, A.: Two levels approach to the problem of extrusion optimization. Simulation of Materials Processing Theory, Methods and Applications. In: Proceedings of the 7 Int. Conf. on Numerical Methods in Industrial Forming Processes, pp. 627–631 (1998)

    Google Scholar 

  12. Biba, N., Stebunov, S., Lishny, A., Vlasov, A.: New approach to 3D finite-element simulation of material flow and its application to bulk metal forming. In: Proceedings of the 7th International Conference on Technology of Plasticity, pp. 829–834 (2002)

    Google Scholar 

  13. Milenin, A.: Modelowanie numeryczne procesów wyciskania profili z zastosowaniem gęstości dyslokacji jako zmiennej wewnętrznej w modelu reologicznym materialu (in Polish). Informatyka w Technologii Materiałów 1(2), 26–33 (2002)

    Google Scholar 

  14. Milenin, A., Biba, N., Stebunow, S.: Modelowania procesów wyciskania cienkościennych kształtów z wykorzystaniem teorii dyslokacji do opisania właściwości reologicznych stopow aluminium. In: Proceedings of the 9th Conference “Informatyka w Technologii Metali”, pp. 217–224 (2002) (in Polish)

    Google Scholar 

  15. Milenin, A., Golovko, A.N., Mamuzic, I.: The application of three-dimensional computer simulation when developing dies for extrusion of aluminium shapes. Metallurgija 41(1), 53–55 (2002)

    Google Scholar 

  16. Bell, J.F.: The Experimental Foundations of Solid Mechanics. In: Encyclopedia of Physics, Mechanics of Solids VIa/1, Berlin (1973)

    Google Scholar 

  17. Kopernik, M., Milenin, A.: Two-scale finite element model of multilayer blood chamber of POLVAD_EXT. Archives of Civil and Mechanical Engineering 12(2), 178–185 (2012)

    Article  Google Scholar 

  18. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. The Fluid Mechanics, vol. 3. Butterworth, Oxford (2000)

    MATH  Google Scholar 

  19. QCG-Icon, http://www.qoscosgrid.org/trac/qcg-icon

  20. ParaView, http://www.paraview.org/

  21. Milenin, A., Kustra, P.: Optimization of extrusion and wire drawing of magnesium alloys using the finite element method and distributed computing. In: Proc. Int. Conf. InterWire, Atlanta, USA. Wire Association International (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Milenin, A., Kustra, P. (2014). Optimization of Profile Extrusion Processes Using the Finite Element Method and Distributed Computing. In: Bubak, M., Kitowski, J., Wiatr, K. (eds) eScience on Distributed Computing Infrastructure. Lecture Notes in Computer Science, vol 8500. Springer, Cham. https://doi.org/10.1007/978-3-319-10894-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10894-0_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10893-3

  • Online ISBN: 978-3-319-10894-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics