Skip to main content

Assessment of Environmental Impacts of Energy Scenarios Using the πESA Platform

  • Chapter
eScience on Distributed Computing Infrastructure

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8500))

  • 1115 Accesses

Abstract

The πESA service developed within the Energy Sector domain grid of the PLGrid Plus project with its main element – a full air quality modelling system Polyphemus – was used to analyse changes in ambient concentration and deposition of pollutants for four energy scenarios. The simulations of atmospheric transport of pollutants were run for a domain centered around Poland with a horizontal resolution of 0.25°. Changes in annual concentrations and depositions of SO2, NOx, PMs for different years as well as energy scenarios were presented. The scenarios were compared as regards to the total deposition of sulphur in the modelling domain. A grid cell, in which the highest hourly concentration of a given pollutant occurred during a year, could be identified. The results show that due to the improvement of emission controls in large combustion plants, which is required to fulfill future EU regulations, they will have much lower negative impact on the environment. The study has shown that establishing a hard link between Polyphemus and TIMES energy model makes it possible to take into account environmental dimension in decisions making for energy policy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. OECD/IEA, International Energy Agency (ed.): Energy Technology Perspectives, Scenarios & Strategies to 2050. Paris, France (2010)

    Google Scholar 

  2. Wyrwa, A.: Towards an integrated assessment of environmental and human health impact of the energy sector in Poland. Archives of Environmental Protection 36(1), 41–48 (2010)

    Google Scholar 

  3. The Energy Sector domain grid within the PLGrid Plus project, http://www.plgrid.pl/en/projects/plus/science_domains

  4. Kitowski, J., Turała, M., Wiatr, K., Dutka, Ł.: PL-Grid: Foundations and Perspectives of National Computing Infrastructure. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 1–14. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., Winiwarter, W.: Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling and Software 26(12), 1489–1501 (2011)

    Article  Google Scholar 

  6. Blaschke, T., Mittlböck, M., Biberacher, M., Gadocher, S., Vockner, B., Hochwimmer, B., Lang, S.: The GEOSS – ENERGEO portal: towards an interactive platform to calculate, forcast and monitor the environmental impact of energy carriers. Integration of Environmental Information in Europe. Shaker Verlag (2010)

    Google Scholar 

  7. Syri, S., Amann, M., Capros, P., Mantzos, L., Cofala, J., Klimont, Z.: Low-CO2 energy pathways and regional air pollution in Europe. Energy Policy 29(11), 871–884 (2001)

    Article  Google Scholar 

  8. Oxley, T., Dore, A.J., ApSimon, H., Hall, J., Kryza, M.: Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM). Environment International 61, 17–35 (2013)

    Article  Google Scholar 

  9. Liu, F., Klimont, Z., Zhang, Q., Cofala, J., Zhao, L., Huo, H., Nguyen, B., Schöpp, W., Sander, R., Zheng, B., Hong, C., He, K., Amann, M., Heyes, C.: Integrating mitigation of air pollutants and greenhouse gases in Chinese cities: Development of GAINS-City model for Beijing. Journal of Cleaner Production 58, 25–33 (2013)

    Article  Google Scholar 

  10. Czarnowska, L., Frangopoulos, C.A.: Dispersion of pollutants, environmental externalities due to a pulverized coal power plant and their effect on the cost of electricity. Energy 41(1), 212–219 (2012)

    Article  Google Scholar 

  11. Schöpp, W., Amann, M., Cofala, J., Heyes, C., Klimont, Z.: Integrated assessment of European air pollution emission control strategies. Environmental Modelling & Software 14(1), 1–9 (1998)

    Article  Google Scholar 

  12. Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L.D., Fagerli, H., Flechard, C.R., Hayman, G.D., Gauss, M., Jonson, J.E., Jenkin, M.E., Nyúri, A., Richter, C., Semeena, V.S., Tsyro, S., Tuovinen, J.P., Valdebenito, A., Wind, P.: The EMEP MSC-W chemical transport model; Technical description. Atmospheric Chemistry and Physics 12(16), 7825–7865 (2012)

    Article  Google Scholar 

  13. Brandt, J., Silver, J.D., Frohn, L.M., Geels, C., Gross, A., Hansen, A.B., Hansen, K.M., Hedegaard, B., Skjøth, A., Villadsen, H., Zare, A., Christensen, J.H.: An integrated model study for Europe and North America using the Danish Eulerian Hemispheric Model with focus on intercontinental transport of air pollution. Atmospheric Environment 53, 156–176 (2012)

    Article  Google Scholar 

  14. Appel, K.W., Chemel, C., Roselle, S.J., Francis, X.V., Hu, R.-M., Sokhi, R.S., Rao, S.T., Galmarini, S.: Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains. Atmospheric Environment 53, 142–155 (2012)

    Article  Google Scholar 

  15. de Ruiter de Wildt, M., Eskes, H., Manders, A., Sauter, F., Schaap, M., Swart, D., Velthoven, P.: Six-day PM10 air quality forecasts for the Netherlands with the chemistry transport model Lotos-Euros. Atmospheric Environment 45, 5586–5594 (2011)

    Article  Google Scholar 

  16. Draxler, R.R., Rolph, G.D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY (2014), http://ready.arl.noaa.gov/HYSPLIT.php

  17. Mehdizadeh, F., Rifai, H.S.: Modeling point source plumes at high altitudes using a modified Gaussian model. Atmospheric Environment 34, 821–831 (2004)

    Article  Google Scholar 

  18. Korsakissok, I., Mallet, V.: Development and application of a reactive plume-in-grid model: evaluation over Greater Paris. Atmos. Chem. Phys. 2010b, 8917–8931 (2010)

    Article  Google Scholar 

  19. Cieślińska, J., Łobocki, L.: Comparison of the Polish regulatory dispersion model with AERMOD. International Journal of Environment and Pollution 40(1-3), 62–69 (2010)

    Google Scholar 

  20. Wyrwa, A., Zyśk, J., Stężały, A., Śliż, B., Pluta, M., Buriak, J., Jestin, L.: Towards an Integrated Assessment of Environmental and Health Impact of Energy Sector in Poland. In Environmental Informatics and Systems Research. Shaker Verlag, Warsaw (2007)

    Google Scholar 

  21. Kryza, M., Dore, A.J., Błaś, M., Sobik, M.: Modelling deposition and air concentration of reduced nitrogen in Poland and sensitivity to variability in annual meteorology. Journal of Environmental Management 92(4), 1225–1236 (2011)

    Article  Google Scholar 

  22. Juda-Rezler, K.: Risk assessment of airborne sulphur species in Poland. Air Pollution Modeling and Its Application: International Technical Meeting on Air Pollution Modeling and Its Application 16, 23 (2003)

    Google Scholar 

  23. Wyrwa, A.: Integrated Impact Assessment of Emissions from the Polish Energy Sector for Determination of the Optimal Mix of Energy Generation and Pollution Control Technologies. In: Faculty of Energy and Fuels. AGH University of Science and Technology, Kraków (2009)

    Google Scholar 

  24. Tainio, M., Juda-Rezler, K., Reizer, M., Warchałowski, A., Trapp, W., Skotak, K.: Future climate and adverse health effects caused by fine particulate matter air pollution: Case study for Poland. Regional Environmental Change 13(3), 705–715 (2013)

    Article  Google Scholar 

  25. Wyrwa, A., Pluta, M., Skoneczny, S., Mirowski, T.: Modelling the Long-term Development of an Energy System with the Use of a Technology Explicit Partial Equilibrium Model. In: Bubak, M., Kitowski, J., Wiatr, K. (eds.) PLGrid Plus. LNCS, vol. 8500, pp. 489–503. Springer, Heidelberg (2014)

    Google Scholar 

  26. CEREA. Polyphemus Air Quality Modeling System (2011), http://cerea.enpc.fr/polyphemus/introduction.html

  27. Stockwell, W.R., Middleton, P., Chang, J.S., Tang, X.: The second generation regional acid deposition model chemical mechanism for regional air quality modelling. J. Geophys. Res. 95, 16343–16367 (1990)

    Article  Google Scholar 

  28. Fahey, K.M., Pandis, S.N.: Optimizing model performance: variable size resolution in cloud chemistry modeling. Atmospheric Environment 35(26), 4471–4478 (2001)

    Article  Google Scholar 

  29. Debry, E., Fahey, K., Sartelet, K., Sportisse, B., Tombette, M.: Technical Note: A new Size Resolved Aerosol Model (SIREAM). Atmos. Chem. Phys. 37, 950–966 (2007)

    Google Scholar 

  30. Mallet, V., Sportisse, B.: 3-D chemistry-transport model Polair: numerical issues, validation and automatic-differentiation strategy. Atmospheric Chemistry and Physics Discussions 4, 1371–1392 (2004)

    Article  Google Scholar 

  31. Mallet, V., Quello, D., Sportisse, B., Ahmed de Biasi, M., Debry, E., Korsakissok, I., Wu, L., Roustan, Y., Sartelet, K., Tombette, M., Foudhil, H.: Technical Note: The air quality modeling system Polyphemus. Atmos. Chem. Phys. 7(20), 5479–5487 (2007)

    Article  Google Scholar 

  32. Lecœur, E., Seigneur, C.: Dynamic evaluation of a multi-year model simulation of particulate matter concentrations over Europe. Atmospheric Chemistry and Physics 13, 4319–4337 (2013)

    Article  Google Scholar 

  33. GLCC/USGS. Global Land Cover Characteristics (2008), http://edc2.usgs.gov/glcc/glcc.php

  34. USGS. U.S Geological Survey (2011), http://www.usgs.gov/

  35. ECMWF. Provides medium-range weather forecast support to European meteorological organizations, http://www.ecmwf.int

  36. Louis, J.F.: A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteor. 17, 187–202 (1979)

    Article  Google Scholar 

  37. Troen, I.B., Mahrt, L.: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorology 37, 129–148 (1986)

    Article  Google Scholar 

  38. Horowitz, L.W., Walters, S., Mauzerall, D.L., Emmons, L.K., Rasch, P.J., Granier, C., Tie, X., Lamarque, J.-F., Schultz, M.G., Tyndall, G.S., Orlando, J.J., Brasseur, G.P.: A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART version II. Journal of Geophysical Research: Atmospheres 108(D24), 4784 (2003)

    Article  Google Scholar 

  39. Chin, M., Rood, R.B., Lin, S.-J., Muller, J.-F., Thompson, A.M.: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. Journal of Geophysical Research: Atmospheres 105(D20), 24671–24687 (2000)

    Article  Google Scholar 

  40. Rafaj, P., Cofala, J., Kuenen, J., Wyrwa, A., Zyśk, J.: Benefits of European Climate Policies for Mercury Air Pollution. Atmosphere 5(1), 45–59 (2014)

    Article  Google Scholar 

  41. Zhang, L., Brook, J.R., Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models. Atmos. Chem. Phys. 3, 2067–2082 (2003)

    Article  Google Scholar 

  42. Zhang, L., Gong, S., Padro, J., Berrie, L.: A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment 35, 549–560 (2001)

    Article  Google Scholar 

  43. Simpson, D., Winiwarter, W., Borjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Hewitt, C.N., Janson, R., Khalil, M.A.K., Owen, S., Pierce, T.E., Puxbaum, H., Shearer, M., Skiba, U., Steinbrecher, R., Tarrason, L., Oquist, M.G.: Inventorying emissions from nature in Europe. J. Geophys. Res. 104, 8113–8152 (1999)

    Article  Google Scholar 

  44. Monahan, E.C., Spiel, D.E., Davidson, K.L.: A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption. Oceanographic Sciences Library 2, 167–174 (1986)

    Article  Google Scholar 

  45. EU, The European Parliament and of the Council of the European Union (ed.): Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union, p. 103 (2010)

    Google Scholar 

  46. Gawlik, L., Grudziński, Z., Kamiński, J., Kaszyński, P., Kryzia, D., Lorenz, U., Mirowski, T., Mokrzycki, E., Olkuski, T., Ozga-Blaschke, U., Pluta, M., Sikora, A., Stala-Szlugaj, K., Suwała, W., Szurlej, A., Wyrwa, A., Zyśk, J., Gawlik, L. (eds.): Coal for the Polish power sector in the time perspective up to 2050 – scenario analysis, vol. I. Wydawnictwo Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 299, Katowice (2013)

    Google Scholar 

  47. Friedrich, R., Reis, S.: Emissions of Air Pollutants – Measurements, Calculation, Uncertainties – Results from the EUROTRAC-2 Subproject GENEMIS. Springer (2004)

    Google Scholar 

  48. Thunis, P., Rouil, L., Cuvelier, C., Stern, R., Kerschbaumer, A., Bessagnet, B., Schaap, M., Builtjes, P., Tarrason, L., Douros, J., Moussiopoulos, N., Pirovano, G., Bedogni, M.: Analysis of model responses to emission-reduction scenarios within the city delta project. Atmospheric Environment 41(1), 208–220 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wyrwa, A., Zyśk, J., Mirowski, T. (2014). Assessment of Environmental Impacts of Energy Scenarios Using the πESA Platform. In: Bubak, M., Kitowski, J., Wiatr, K. (eds) eScience on Distributed Computing Infrastructure. Lecture Notes in Computer Science, vol 8500. Springer, Cham. https://doi.org/10.1007/978-3-319-10894-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10894-0_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10893-3

  • Online ISBN: 978-3-319-10894-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics