Skip to main content

Observing a Naïve Bayes Classifier’s Performance on Multiple Datasets

  • Conference paper
Advances in Databases and Information Systems (ADBIS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8716))

  • 1041 Accesses

Abstract

General theories describing the performance of artificial learners are of little help when a user is confronted with a selection of datasets and a given artificial classifier. The objective of this paper is to find out the best description of the learning curves produced by a Naïve Bayes classification. The performance of Naïve Bayes was measured on 121 datasets using k-fold crossvalidation. Power, linear, logarithmic and exponential functions were fit to the data. The exponential function was a better descriptor of the error rate in 44 of 60 useful cases. Average mean squared error is significantly different at P=0,000 from power and linear and at P=0,001 from logarithmic function. The exponential function’s rank is significantly different from the ranks of other models (P=0,000). The results can be used to forecast the future performance of the learner, or to check where on the learning curve the current measurement lies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.R., Schooler, L.J.: Reflections of the Environment in Memory. Psychological Science 2(6), 396–408 (1991)

    Article  Google Scholar 

  2. Anderson, R.B.: The power law as an emergent property. Memory & Cognition 29(7), 1061–1068 (2001)

    Article  Google Scholar 

  3. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-Law Distributions in Empirical Data. SIAM Review 51(4), 661–703 (2009), doi:10.1137/070710111

    Article  MATH  MathSciNet  Google Scholar 

  4. Heathcote, A., Brown, S., Mewhort, D.J.K.: The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review 7(2), 185–207 (2000), doi:10.3758/bf03212979

    Article  Google Scholar 

  5. Kotsiantis, S.B.: Supervised Machine Learning: A Review of Classification Techniques. Informatica (Ljubljana) 31(3), 249–268 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Dzemyda, G., Sakalauskas, L.: Large-Scale Data Analysis Using Heuristic Methods. Informatica (Lithuan.) 22(1), 1–10 (2011)

    Google Scholar 

  7. Vapnik, V.N.: Estimation of Dependences Based on Empirical Data. Springer, NY (1982)

    MATH  Google Scholar 

  8. Brumen, B., Jurič, M.B., Welzer, T., Rozman, I., Jaakkola, H., Papadopoulos, A.: Assessment of classification models with small amounts of data. Informatica (Lithuan.) 18(3), 343–362 (2007)

    MATH  Google Scholar 

  9. Dučinskas, K., Stabingiene, L.: Expected Bayes Error Rate in Supervised Classification of Spatial Gaussian Data. Informatica (Lithuan.) 22(3), 371–381 (2011)

    MATH  Google Scholar 

  10. Frey, L.J., Fisher, D.H.: Modeling decision tree performance with the power law. In: Seventh International Workshop on Artificial Intelligence and Statistics. Morgan Kaufmann, Ft. Lauderdale (1999)

    Google Scholar 

  11. Last, M.: Predicting and Optimizing Classifier Utility with the Power Law. In: 7th IEEE International Conference on Data Mining, ICDM Workshops 2007. IEEE, Omaha (2007), doi:10.1109/icdmw.2007.31

    Google Scholar 

  12. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: Fifth International Conference on Knowledge Discovery and Data Mining. ACM, San Diego (1999)

    Google Scholar 

  13. Singh, S.: Modeling Performance of Different Classification Methods: Deviation from the Power Law. Project Report. Vanderbilt University, Nashville, Tennessee, USA, Department of Computer Science (2005)

    Google Scholar 

  14. Dzemyda, G., Sakalauskas, L.: Optimization and Knowledge-Based Technologies. Informatica (Lithuan.) 20(2), 165–172 (2009)

    MATH  Google Scholar 

  15. John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, August 18-20. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  16. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005) ISBN: 0120884070

    Google Scholar 

  17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  18. Asuncion, A., Newman, D.: UCI Machine Learning Repository (2010), http://archive.ics.uci.edu/ml/datasets.html (Archived by WebCite® at http://www.webcitation.org/6C2hgsRrX )

  19. TunedIT. TunedIT research repository (2012), http://tunedit.org/search?q=arff&qt=Repository (accessed: December 12, 2012) (Archived by WebCite® at http://www.webcitation.org/6CqplN6Xr )

  20. Kjellerstrand H.: My Weka page (2012), http://www.hakank.org/weka/ (accessed: December 12, 2012) (Archived by WebCite® at http://www.webcitation.org/6Cqq5pQtZ )

  21. Kjellerstrand, H.: My Weka page/DASL (2012), http://www.hakank.org/weka/DASL/ (accessed: December 12, 2012) (Archived by WebCite® at http://www.webcitation.org/6CqqCwPmy )

  22. Chai, K.: Kevin Chai Datasets (2012), http://kevinchai.net/datasets (accessed: December 12, 2012) (Archived by WebCite® at http://www.webcitation.org/6CqqWlQEp )

  23. Brumen, B., Hölbl, M., Harej Pulko, K., Welzer, T., Heričko, M., Jurič, M.B., Jaakkola, H.: Learning Process Termination Criteria. Informatica (Lithuan.) 23(4), 521–536 (2012)

    Google Scholar 

  24. Cohen, P.R.: Empirical methods for artificial intelligence. MIT Press, Cambridge (1995) ISBN: 9780262032254

    Google Scholar 

  25. Weiss, S.M., Kulikowski, C.A.: Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems. Morgan Kaufmann, San Mateo (1991) ISBN: 978-1558600652

    Google Scholar 

  26. McLachlan, G.J., Do, K.-A., Ambroise, C.: Analyzing microarray gene expression data. Wiley, Hoboken (2004) ISBN: 0471226165

    Google Scholar 

  27. Eaton, J.W.: GNU Octave (2012), http://www.gnu.org/software/octave/ (accessed: December 12, 2012) (Archived by WebCite® at http://www.webcitation.org/6CqyEvDKU )

  28. Marquardt, D.W.: An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics 11(2), 431–441 (1963), doi:10.2307/2098941

    Article  MATH  MathSciNet  Google Scholar 

  29. Levenberg, K.: A Method for the Solution of Certain Non-Linear Problems in Least Squares. Quarterly of Applied Mathematics 2, 164–168 (1944)

    MATH  MathSciNet  Google Scholar 

  30. Argyrous, G.: Statistics for research: With a guide to SPSS, 3rd edn. SAGE Publications Ltd., Thousand Oaks (2011) ISBN: 1849205957

    Google Scholar 

  31. Medvedev, V., Dzemyda, G., Kurasova, O., Marcinkevicijus, V.: Efficient Data Projection for Visual Analysis of Large Data Sets Using Neural Networks. Informatica (Lithuan.) 22(4), 507–520 (2011)

    Google Scholar 

  32. Abdi, H.: The Bonferonni and Šidák Corrections for Multiple Comparisons. In: Salkind, N.J. (ed.) Encyclopedia of Measurement and Statistics. SAGE Publications, Inc., Thousand Oaks (2007) ISBN: 9781412916110

    Google Scholar 

  33. Pragarauskaite, J., Dzemyda, G.: Markov Models in the Analysis of Frequent Patterns in Financial Data. Informatica (Lithuan.) 24(1), 87–102 (2014)

    MathSciNet  Google Scholar 

  34. Pišek, P., Štumberger, B., Marčič, T., Virtič, P.: Design analysis and experimental validation of a double rotor synchronous PM machine used for HEV. IEEE Transactions on Magnetics 49(1), 152–155 (2013), doi:10.1109/TMAG.2012.2220338

    Article  Google Scholar 

  35. Virtič, P.: Determining losses and efficiency of axial flux permanent magnet synchronous motor. Przeglęad Elektrotechniczny 89(2b), 13–16 (2013)

    Google Scholar 

  36. Virtič, P., Pišek, P., Hadžiselimović, M., Marčič, T., Štumberger, B.: Torque analysis of an axial flux permanent magnet synchronous machine by using analytical magnetic field calculation. IEEE Transactions on Magnetics 45(3), 1036–1039 (2009), doi:10.1109/TMAG.2009.2012566

    Article  Google Scholar 

  37. Virtič, P., Pišek, P., Marčič, T., Hadžiselimović, M., Štumberger, B.: Analytical analysis of magnetic field and back electromotive force calculation of an axial-flux permanent magnet synchronous generator with coreless stator. IEEE Transactions on Magnetics 44(11), 4333–4336 (2008)

    Article  Google Scholar 

  38. Hadžiselimović, M., Virtič, P., Štumberger, G., Marčič, T., Štumberger, B.: Determining force characteristics of an electromagnetic brake using co-energy. Journal of Magnetism and Magnetic Materials 320(20), e556-e561 (2008), doi: 10.1016/j.jmmm.2008.04.013

    Google Scholar 

  39. Castillo, G., Gama, J.: Adaptive Bayesian network classifiers. Intelligent Data Analysis 13(1), 39–59 (2009), doi:10.3233/IDA-2009-0355

    Google Scholar 

  40. Castillo, G., Gama, J.: An adaptive prequential learning framework for Bayesian network classifiers. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 67–78. Springer, Heidelberg (2006)

    Google Scholar 

  41. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  42. Cipresso, P., Carelli, L., Solca, F., Meazzi, D., Meriggi, P., Poletti, B., Lulé, D., Ludolph, A.C., Silani, V., Riva, G.: The use of P300-based BCIs in amyotrophic lateral sclerosis: from augmentative and alternative communication to cognitive assessment. Brain and Behavior 2(4), 479–498 (2012), doi:10.1002/brb3.57

    Article  Google Scholar 

  43. Cipresso, P., Paglia, F., Cascia, C., Riva, G., Albani, G., La Barbera, D.: Break in volition: a virtual reality study in patients with obsessive-compulsive disorder. Experimental Brain Research 229(3), 443–449 (2013), doi:10.1007/s00221-013-3471-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Brumen, B., Rozman, I., Černezel, A. (2014). Observing a Naïve Bayes Classifier’s Performance on Multiple Datasets. In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds) Advances in Databases and Information Systems. ADBIS 2014. Lecture Notes in Computer Science, vol 8716. Springer, Cham. https://doi.org/10.1007/978-3-319-10933-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10933-6_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10932-9

  • Online ISBN: 978-3-319-10933-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics