Abstract
Ant Colony Optimization (ACO) is a population-based constructive metaheuristic that exploits a form of past performance memory inspired by the foraging behavior of real ants. The behavior of the ACO algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired algorithms. The present paper explores a new approach of diversity control in ACO. The central idea is to avoid or slow down full convergence through the dynamic variation of a certain parameter. The performance of different variants of the ACO algorithm was observed to choose one as the basis to the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence was created. Encouraging results on several travelling salesman problem (TSP) instances and its application to the design of fuzzy controllers, in particular the optimization of membership functions for a unicycle mobile robot trajectory control are presented with the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Merkle, D., Middendorf, M.: Prospects for dynamic algorithm control: lessons from the phase structure of ant scheduling algorithms. In: Heckendorn R.B. (ed) Proceedings of the 2000 Genetic and Evolutionary Computation Conference—Workshop Program. Workshop “The Next Ten Years of Scheduling Research”, Morgan Kaufmann Publishers (2001)
Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Trans. Evol. Comput. 6, 333–346 (2002)
B Meyer, Convergence control in ACO. Genetic and Evolutionary Computation Conference (GECCO), Seattle (2004)
Yen, J., Langari, R.: Fuzzy Logic: Intelligence, Control and Information. Prentice Hall, Englewood Cliffs (1999)
Castillo, O., Martinez-Marroquin, R., Melin, P., Valdez, F., Soria, J.: Comparative study of bio inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf. Sci. (2010, in press)
M Mohamad, W Dunningan, Ant colony robot motion planning. In: International Conference on Computer as a Tool, EUROCON, Serbia and Montenegro (2005)
Reinelt, G.: TSPLIB. University of Heidelberg, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)
Martínez, R., Castillo, O., Aguilar, L.: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobil robot using genetic algorithms. Inf. Sci. 179, 2158–2174 (2009)
Aceves, A., Aguilar, J.: A simplified version of Mamdani’s fuzzy controller: the natural logic controller. IEEE Trans. Fuzzy Syst. 14(1), 16–30 (2006)
Alcalá-Fdez, J., Alcalá, R., Gacto, M.J., Herrera, F.: Learning the membership function contexts forming fuzzy association rules by using genetic algorithms. Fuzzy Sets Syst. 160(7), 905–921 (2009)
Bloch, A.M., Drakunov, S.: Tracking in non-Holonomic dynamic system via sliding modes. In: Proceedings of IEEE Conference on Decision and Control, Brighton, pp. 1127–1132 (1991)
Campion, G., Bastin, G., D’Andrea-Novel, B.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. Autom. 12(1), 47–62 (1996)
Chusanapiputt, S., Nualhong, D., Jantarang, S., Phoomvuthisarn, S.: Selective self-adaptive approach to ant system for solving unit commitment problem. In: Cattolico M., et al. (eds.) GECCO 2006, pp. 1729–1736. ACM Press, New York (2006)
Chwa, D.: Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Trans. Control Syst. Tech. 12(4), 633–644 (2004)
Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Rob. Autom. 16(5), 609–615 (2000)
Hao, Z., Huang, H., Qin, Y., Cai, R.: An ACO algorithm with adaptive volatility rate of pheromone trail. Lect. Notes Comput. Sci. 4490, 1167–1170 (2007)
Hong, T., Chen, C., Wu, Y., Lee, Y.: Using divide-and-conquer GA strategy in fuzzy data mining. IEEE International Symposium on Fuzzy Systems, pp. 116–121. Budapest, Hungary (2004)
Hong, T.P., Tung, Y.F., Wang, S.L., Wu, M.T., Wu, Y.L.: Extracting membership functions in fuzzy data mining by ant colony systems. Extracting Membership Functions Fuzzy Data Min. Ant Colony Syst. 7, 3979–3984 (2008)
Ishikawa, S., A method of indoor mobile robot navigation by fuzzy control. In: Proceedings International Conference Intelligence Robotics System, pp. 1013–1018. Osaka, Japan (1991)
Kanayama, Y., Kimura, F., Miyazaki, T., Noguchi, A.: Stable tracking control method for a non-holonomic mobile robot. Proceedings IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp. 1236–1241. Osaka, Japan (1991)
Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, New York (2002)
Kulkarni, A.: Computer Vision and Fuzzy-Neural Systems. Prentice Hall, Englewood Cliffs (2001)
Lee, T.H., Leung, F.H.F., Tam, P.K.S.: Position Control for Wheeled Mobile Robot Using a Fuzzy Controller, pp 525–528. IEEE (1999)
Lee, T.C., Tai, K.: Tracking control of unicycle-modeled mobile robots using a saturation feedback controller. IEEE Trans. Control Syst. Technol. 9(2), 305–318 (2001)
Li, Y., Li, W.: Adaptive ant colony optimization algorithm based on information entropy, Foundation and application. Fundamenta Informaticae (2007)
Liberzon, D.: Switching in Systems and Control, Bikhauser (2003)
Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms: Concepts and Designs. Springer, Berlin (2000)
Mendel, J.: Uncertain Rule-Based Fuzzy Logia Systems, Introduction and New Directions. Prentice-Hall, Englewood Cliffs (2001)
W Nelson, I Cox, Local Path Control for an Autonomous Vehicle. Proceedings of IEEE Conference on Robotics and Automation, pp. 1504–1510 (1988)
Paden, B., Panja, R.: Globally asymptotically stable PD + controller for robot manipulator. Int. J. Control 47(6), 1697–1712 (1988)
Parvinder, K., Shakti, K., Amarpartap, S.: Optimization of membership functions based on ant colony algorithm. Int. J. Comput. Sci. Inf. Secur. 10(4), 38–45 (2012)
Pawlowski, S., Dutkiewicz, P., Kozlowski, K., Wroblewski, W.: Fuzzy logic implementation in mobile robot control. In: 2nd Workshop on Robot Motion and Control, pp 65–70 (2001)
Stützle, T., López-Ibañez, M., Pellegrini, P., Maur, M., Montes de Oca, M.A., Birattar, M., Dorigo, M.: Parameter adaptation in ant colony optimization. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search. Springer, Berlin (2012)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)
Tsai, C.C., Lin, H.H., Lin, C.C.: Trajectory tracking control of a laser-guided wheeled mobile robot. In: Proceedings IEEE International Conferences on Control Applications, pp. 1055–1059. Taipei (2004)
Ulyanov, S.V., Watanabe, S., Ulyanov, V.S., Yamafuji, K., Litvintseva, L.V., Rizzotto, G.G.: Soft computing for the intelligent robust control of a robotic unicycle with a new physical measure for mechanical controllability. Soft Comput. 2, 73–88 (1998). (Springer)
Valdez, F., Melin, P., Castillo, O.: An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Appl. Soft Comput. 11, 2625–2632 (2011)
Ye, W., Ma, D., Fan, H.: Path planning for space robot based on the self-adaptive ant colony algorithm. Proceedings of the 1st International Symposium on Systems and Control in Aerospace and Astronautics ISSCAA, IEEEXplore (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Neyoy, H., Castillo, O., Soria, J. (2015). Fuzzy Logic for Dynamic Parameter Tuning in ACO and Its Application in Optimal Fuzzy Logic Controller Design. In: Castillo, O., Melin, P. (eds) Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics. Studies in Computational Intelligence, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-10960-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-10960-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10959-6
Online ISBN: 978-3-319-10960-2
eBook Packages: EngineeringEngineering (R0)