Skip to main content

Mood Recognition System Using EEG Signal of Song Induced Activities

  • Chapter
  • First Online:
Brain-Computer Interfaces

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 74))

  • 4144 Accesses

Abstract

Music is referred to as language of emotions. Music induces emotion in the brain. These emotions are subject not only types of music, but also the sensitivity of the person subjected to music. Dissimilar cases of songs as relax, patriotism, happiness, romantic or sadness will induce different types of brain activities generating different EEG signals. EEG signal is applied to measure electrical activity of the brain. These EEG signal contain precious information of the different moods of subject. In this work, we proposed a mood recognition system using EEG signal of Song Induced activity. The main purpose is to analyze alpha rhythm of EEG signal related to the left hemisphere, and right hemisphere regions of the brain. We have selected 10 male subjects in the age group of 20–25. The electrodes placed on the scalp of the subject as per the International 10–20 standard. Each test was conducted for 25 min, with eye closed and each subject was asked to concentrate on the given tasks. In this study, we have created EEG dataset containing data of five mental tasks of ten different subjects. We determine the alpha rhythms in the left hemisphere are more predominant over the right hemisphere for emotions. Thus we conclude that the left region of the brain gives more response to the emotions rather than the right region. Here we reduce the EEG database from brain region to left hemisphere. Further we reduce it to single electrode as F7 which reside in left region. The database generated in our study may be used to interface the brain with computer to mood recognition system. This will have wide varieties of applications in the future. For example, the entertainment industries may use it for composition of songs as per their effect on the brain. This study also shows that alpha power frequency carries useful information related to mood recognition. These features are separated using Linear Discriminate Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alison, B.Z., Wolpow, E.W., Wolpow, J.R.: Brain computer system: progress and prospects. Expert Rev. Med. Devices 4(4), 463–474 (2000)

    Article  Google Scholar 

  2. Azar, A.T., Balas, V.E., Olariu, T.: Classification of EEG-based brain-computer interfaces. Adv. Intell. Comput. Technol. Decision Support Syst. Stud. Comput. Intell. 486, 97–106 (2014)

    Google Scholar 

  3. Balconi, M., Lucchiari, C.: EEG correlates (event-related desynchronization) of emotional face elaboration: a temporal analysis. Neurosci. Lett. 392(1–2), 118–123 (2006)

    Article  Google Scholar 

  4. Bickford, R.D.: Electroencephalography. Adelman George Encycl. Neurosci. 244, 371–373 (1987)

    Google Scholar 

  5. Bronzino, J.D.: Principles of Electroencephalography. The Biomedical Engineering Handbook. CRC Press, Boca Raton (2000)

    Google Scholar 

  6. Carlson, N.R.: Structure and Functions of the Nervous System. Foundations of Physiological Psychology. Allyn and Bacon, Boston (2002)

    Google Scholar 

  7. Chakraborty, Bhowmik, A., Das, S., Halder, A., Konar, A., Nagar, A.K.: Correlation between stimulated emotion extracted from EEG and its manifestation on facial expression. In: IEEE International Conference on IEEE Systems, Man and Cybernetics (SMC 2009), pp. 3132–3137 (2009)

    Google Scholar 

  8. Cincotti, F., Mattia, D., Aloise, F., Bufalari, S.: High-resolution EEG techniques for brain computer interface applications. J. Neurosci. Methods 167(1), 31–42 (2008)

    Article  Google Scholar 

  9. Collura, T.F.: History and evolution of electroencephalographic instruments and techniques. Clin. Neurophysiol. 10(4), 476–504 (1993)

    Article  Google Scholar 

  10. Esslen, M., Pascual-Marqui, R.D., Hell, D., Kochi, K., Lehmann, D.: Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. J. New Music Res. 33(4), 217–238 (2004)

    Google Scholar 

  11. Esslen, M., Pascual-Marqui, R.D., Hell, D., Kochi, K., Lehmann, D.: Brain areas and time course of emotional processing. Neuroimage 21(4), 118–123 (2004)

    Article  Google Scholar 

  12. Fatourechi, M., Bashashati, A., Ward, R.K., Birch, G.E.: EMG and EOG artifacts in brain computer interface systems: a survey. Clin. Neurophysiol. 118(3), 480–494 (2007)

    Article  Google Scholar 

  13. Gaines, B.R.: A conceptual framework for person-computer interaction in distributed systems. IEEE Trans. Syst. Man Cybern. 18, 532–541 (1988)

    Article  Google Scholar 

  14. Graimann, B., Huggins, J.E., Levine, S.P., Pfurtscheller, G.: Visualization of significant ERD/ERS patterns in multichannel EEG and ECOG data. Clin. Neurophysiol. 113(1), 43–47 (2002)

    Article  Google Scholar 

  15. Gratton, G., Fabiani, M.: Shedding light on brain function: the event-related optical signal. Trends Conginative Sci. 5(8), 363–375 (2001)

    Google Scholar 

  16. Hewson, D.J., Duchne, J., Hogrel, J.-Y.: Changes in impedance at the electro skin interface of surface EMG electrodes during long term EMG recordings. In: IEEE 23rd Annual Conference on IEEE/EMBS (2001)

    Google Scholar 

  17. Huisheng, L., Wang, M., Hongqiang, Y.: EEG model and location in brain when enjoying music. In: 27th Annual International Conference on IEEE Engineering in Medicine and Biology Society (IEEE-EMBS 2005), pp. 2695–2698 (2005)

    Google Scholar 

  18. Ito, S., Mitsukura, Y., Fukumi, M., Akamatsu, N.: Feature extraction of the EEG during listening to the music using the factor analysis and neural networks. In: Proceedings of the International Joint Conference on IEEE Neural Networks, pp. 2263–2267 (2003)

    Google Scholar 

  19. Ito, S. I., Mitsukura, Y., Fukumi, M., Jianting, C.: Detecting method of music to match the users mood in prefrontal cortex EEG activity using the GA. In: International Conference on IEEE Biomedical and Pharmaceutical Engineering (ICBPE 2006), pp. 1798–1806 (2007)

    Google Scholar 

  20. Jasper, H.H.: Report of the committee on methods of clinical examination in electronic photography: the ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 10(2), 371–375 (2006)

    Google Scholar 

  21. Karthick, N., Thajudin, A.V., Joseph, P.K.: Music and the EEG: a study using nonlinear methods. In: International Conference on IEEE Biomedical and Pharmaceutical Engineering (ICBPE 2006), pp. 424–427 (2005)

    Google Scholar 

  22. Khosrowabadi, R., Quek, H.C., Wahab, A., Ang, K.K.: EEG-based emotion recognition using self-organizing map for boundary detection. In: 20th International Conference on IEEE Pattern Recognition (ICPR), pp. 4242–4245 (2010)

    Google Scholar 

  23. Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29(2–3), 169–195 (2000)

    Google Scholar 

  24. Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., Schwaiger, J.: Induced alpha band power changes in the human EEG and attention. Neurosci. Lett. 244(2), 73–76 (1998)

    Article  Google Scholar 

  25. Kwon, M., Kang, J.-S., Lee, M.: Emotion classification in movie clips based on 3D fuzzy GIST and EEG signal analysis. In: 2013 International Winter Workshop on IEEE Brain-Computer Interface (BCI), pp. 67–68 (2013)

    Google Scholar 

  26. Levine, S.P.: A direct brain interface based on event-related potentials. IEEE Trans. Rehabil. Eng. 8(2), 180–185 (2000)

    Article  Google Scholar 

  27. Mason, S.G.: A general framework for brain-computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng. 11(1), 70–85 (2003)

    Article  Google Scholar 

  28. Millan, J.R., Hauser, A., Renkens, F.: Adaptive brain interfaces—ABI: simple features, simple neural network, complex brain-actuated devices. In: IEEE Conference Proceeding, pp. 297–300 (2002)

    Google Scholar 

  29. Millan, J.R., Mourino, J.: Asynchronous bci and local neural classifiers: an overview of the adaptive brain interface project. IEEE Trans. Rehabil. Eng. 11(2), 159–161 (2003)

    Article  Google Scholar 

  30. Morrison, J.H., Patrick, R.H.: Life and death of neurons in the aging brain. Science 278, 412–419 (1997)

    Article  Google Scholar 

  31. Murugappan, M.: Human emotion classification using wavelet transform and KNN. In: 2011 International Conference on IEEE Pattern Analysis and Intelligent Robotics (ICPAIR), vol. 1, pp. 148–153 (2011)

    Google Scholar 

  32. Niedermeyer, E., Silva, L.D.: Electroencephalography: Basic Principles, Clinical Applications and Related Fields. Lippincott Williams and Wilkins, Baltimore (1999)

    Google Scholar 

  33. Nunez, P.L., Cutillo, B.A.: Neocortical dynamics and human EEG rhythms. Oxford University Press, Oxford (1995)

    Google Scholar 

  34. Picton, T., Bentin, S., Berg, P., Donchin, E., Hillyard, S.: Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria, pp. 127–152. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  35. Reza, F.-R.: P300-based speller brain-computer interface. In: Naik, G.R. (ed.) Recent advances in biomedical engineering, In Tech (2009). doi:10.5772/7483

  36. Sanei, S. Chambers, J.: EEG Signal Processing. Wiley, New York (2007)

    Google Scholar 

  37. Tephlan, M.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  38. Teplan, M.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  39. Tripathi, K.P.: A study of interactivity in human computer interaction. Int. J. Comput. Appl. 16(6), 1–3 (2011). http://www.ijcaonline.org/volume16/number6/pxc3872724.pdf

  40. Turban, E., Aronson, J.E.: Decision Support Systems and Intelligent Systems. Pearson Education, New Delhi (2003)

    Google Scholar 

  41. Vidal, J.J.: Real-time detection of brain events in EEG. In: IEEE Proceedings of the IEEE, pp. 633–641 (1977)

    Google Scholar 

  42. Vijayalakshmi, K., Sridhar, S., Khanwani, P.: Estimation of effects of alpha music on EEG components by time and frequency domain analysis. In: Computer and Communication Engineering (ICCCE), pp. 1–5 (2010)

    Google Scholar 

  43. Wolpaw, J.R.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2), 164–173 (2000) (see also IEEE Trans. Neural Syst. Rehabil.)

    Google Scholar 

  44. Yuan-Pin, L., Chi-Hong, W., Tien-Lin, W., Shyh-Kang, J., and Jyh-Horng, C. (2008). Support vector machine for EEG signal classification during listening to emotional music. In: IEEE 10th Workshop on Multimedia Signal Processing, pp. 127–130 (2008)

    Google Scholar 

  45. Yuan-Pin, L., Chi-Hong, W., Tzyy-Ping, J., Tien-Lin, W., Shyh-Kang, J., Jeng-Ren, D., Chen, J.-H.: EEG-based emotion recognition in music listening. In: IEEE Transactions on Biomedical Engineering, pp. 1–130 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Deore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deore, R., Mehrotra, S. (2015). Mood Recognition System Using EEG Signal of Song Induced Activities. In: Hassanien, A., Azar, A. (eds) Brain-Computer Interfaces. Intelligent Systems Reference Library, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-10978-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10978-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10977-0

  • Online ISBN: 978-3-319-10978-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics